File size: 6,625 Bytes
84a2a5d
 
d8933a6
 
 
 
 
 
84a2a5d
1d36dc7
84a2a5d
d8933a6
 
1d765ae
 
d8933a6
 
 
 
 
 
 
 
 
 
 
 
 
 
1d765ae
d8933a6
 
 
1d765ae
d8933a6
 
 
 
 
1d765ae
d8933a6
 
1d765ae
d8933a6
 
1d765ae
 
 
 
 
 
 
d8933a6
 
1d765ae
d8933a6
 
1d765ae
 
 
 
 
 
6aad36f
1d765ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8933a6
 
1d765ae
 
 
 
 
 
 
 
 
 
6aad36f
1d765ae
d8933a6
 
1d765ae
d8933a6
1d765ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6434e0
 
 
 
 
 
 
 
d8933a6
1d765ae
d8933a6
 
1d765ae
d8933a6
1d36dc7
 
 
 
 
 
d8933a6
 
1d765ae
d8933a6
 
1d765ae
 
84a2a5d
1d765ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
library_name: transformers
tags:
- functioncalling
license: apache-2.0
language:
- it
pipeline_tag: image-to-text
---
<img src="https://hoodie-creator.s3.eu-west-1.amazonaws.com/2c331689-original.png" alt="llamantino53" border="0" width="400px">

## Introduction
Zefiro functioncalling extends Large Language Model(LLM) Chat Completion feature to formulate 
executable APIs call given Italian based natural language instructions and API context. With OpenFunctions v2,

we now support:
1. Relevance detection - when chatting, chat. When asked for function, returns a function
2. REST - native REST support


## Models Available
|Model | Functionality|
|---|---|
|zefiro-funcioncalling-v0.3-alpha | Given a function, and user intent, returns properly formatted json with the right arguments|

All of our models are hosted on our Huggingface mii-community org: [zefiro-funcioncalling-v0.3-merged](https://huggingface.co/giux78/zefiro-funcioncalling-v0.3-merged).

## Training

Zefiro functioncalling alpha is a 7B parameter model, and  is fine tuned version of [gorilla-llm](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2) that is built on top of the [deepseek coder](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) LLM.



## Example Usage (Local)


1. OpenFunctions is compatible with OpenAI Functions

```bash
!pip install openai==0.28.1, transformers
```

2. Load the model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "giux78/zefiro-funcioncalling-v0.3-merged"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.to('cuda')
tokenizer = AutoTokenizer.from_pretrained(model_id)

```

3. Prepare your data with a system prompt and an array of json openapi compatible: only the description key should be in Italian all the json in english a part all description keys. 

```python
json_arr = [{"name": "order_dinner", "description": "Ordina una cena al ristorante", "parameters": {"type": "object", "properties": {"restaurant_name": {"type": "string", "description": "il nome del ristorante", "enum" : ['Bufalo Bill','Pazzas']}}, "required": ["restaurant_name"]}},
            {"name": "get_weather", "description": "Ottieni le previsioni del tempo meteorologica", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "Il nome del luogo "}}, "required": ["location"]}},
            {"name": "create_product", "description": "Crea un prodotto da vendere", "parameters": {"type": "object", "properties": {"product_name": {"type": "string", "description": "Il nome del prodotto "}, "size": {"type": "string", "description": "la taglia del prodotto"}, "price": {"type": "integer", "description": "Il prezzo del prodotto "}}, "required": ["product_name", "size", "price"]}},
            {"name": "get_news", "description": "Dammi le ultime notizie", "parameters": {"type": "object", "properties": {"argument": {"type": "string", "description": "L'argomento su cui fare la ricerca"}}, "required": ["argument"]}},
            ]
json_string = ' '.join([json.dumps(json_obj) for json_obj in json_arr2])
system_prompt = 'Tu sei un assistenze utile che ha accesso alle seguenti funzioni. Usa le funzioni solo se necessario - \n ' + json_string + ' \n '
system_prompt
```

4. Call the model

```python
def generate_text():
    prompt = tokenizer.apply_chat_template(test_message2, tokenize=False)
    model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
    generated_ids = model.generate(**model_inputs, max_new_tokens=1024)
    return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]


text_response = generate_text()
```

5. Parse the response

```python
FN_CALL_DELIMITER = "<<functioncall>>"

def strip_function_calls(content: str) -> list[str]:
    """
    Split the content by the function call delimiter and remove empty strings
    """
    return [element.replace('\n', '') for element in content.split(FN_CALL_DELIMITER)[1:] if element ]


functions_string = strip_function_calls(text_response)

# Output: [' {"name": "create_product", "arguments": \'{"product_name": "AIR", "size": "L", "price": 100}\'}']
```

6. Create an object representation of the string

```python
# if functions_string contains a function string create a json cleaning
# multiple functions not supported yet
if functions_string: 
    obj_to_call = json.loads(functions_string[0].replace('\'', ''))
else: 
    print('nothing to do or return a normal chat response')

# Output: {'name': 'create_product', 'arguments': {'product_name': 'AIR', 'size': 'L', 'price': 100}}
```


7.  
```python
def obj_to_func(obj):
    arguments_keys = obj['arguments'].keys()
    params = []
    for key in arguments_keys:
        param = f'{key}=\"{obj["arguments"][key]}\"'
        params.append(param)
    func_params = ','.join(params)
    print(f'{obj["name"]}({func_params})') 
    return f'{obj["name"]}({func_params})'

func_str = obj_to_func(obj_to_call)

openai_response = {
  "index": 0,
  "message": {
    "role": "assistant",
    "content": func_str,
    "function_call": [
      obj_to_call
    ]
  },
  "finish_reason": "stop"
}


'''
Output OpenAI compatible Dictionary
{'index': 0,
 'message': {
              'role': 'assistant',
              'content': 'create_product(product_name="AIR",size="L",price="100")',
              'function_call': [{'name': 'create_product', 'arguments': {'product_name': 'AIR', 'size': 'L', 'price': 100}}]
            },
'finish_reason': 'stop'
}
'''
```

JSON to be OpenAI compatible.

## Limitation
The model has some bug and some unexpected behaviour for example the more json you pass the less accurate it become filling the json output but
the interesting thing is that those are pattern that i did not consider in the data. It will be enough to improove the cases in the data to fix the bugs.
Stay tuned for a better version soon. 


## License

Zefiro-functioncalling is distributed under the Apache 2.0 license as the base model Gorilla-LLM v0.2. This software incorporates elements from the Deepseek model. Consequently, the licensing of Gorilla OpenFunctions v2 adheres to the Apache 2.0 license, with additional terms as outlined in [Appendix A](https://github.com/deepseek-ai/DeepSeek-LLM/blob/6712a86bfb7dd25c73383c5ad2eb7a8db540258b/LICENSE-MODEL) of the Deepseek license.

## Contributing
Please email us your comments, criticism, and questions. More information about the project can be found at [https://zefiro.ai](https://zefiro.ai)


## Citation
This work is based  on Gorilla an open source effort from UC Berkeley and we welcome contributors.