File size: 6,625 Bytes
84a2a5d d8933a6 84a2a5d 1d36dc7 84a2a5d d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d765ae 6aad36f 1d765ae d8933a6 1d765ae 6aad36f 1d765ae d8933a6 1d765ae d8933a6 1d765ae d6434e0 d8933a6 1d765ae d8933a6 1d765ae d8933a6 1d36dc7 d8933a6 1d765ae d8933a6 1d765ae 84a2a5d 1d765ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: transformers
tags:
- functioncalling
license: apache-2.0
language:
- it
pipeline_tag: image-to-text
---
<img src="https://hoodie-creator.s3.eu-west-1.amazonaws.com/2c331689-original.png" alt="llamantino53" border="0" width="400px">
## Introduction
Zefiro functioncalling extends Large Language Model(LLM) Chat Completion feature to formulate
executable APIs call given Italian based natural language instructions and API context. With OpenFunctions v2,
we now support:
1. Relevance detection - when chatting, chat. When asked for function, returns a function
2. REST - native REST support
## Models Available
|Model | Functionality|
|---|---|
|zefiro-funcioncalling-v0.3-alpha | Given a function, and user intent, returns properly formatted json with the right arguments|
All of our models are hosted on our Huggingface mii-community org: [zefiro-funcioncalling-v0.3-merged](https://huggingface.co/giux78/zefiro-funcioncalling-v0.3-merged).
## Training
Zefiro functioncalling alpha is a 7B parameter model, and is fine tuned version of [gorilla-llm](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2) that is built on top of the [deepseek coder](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) LLM.
## Example Usage (Local)
1. OpenFunctions is compatible with OpenAI Functions
```bash
!pip install openai==0.28.1, transformers
```
2. Load the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "giux78/zefiro-funcioncalling-v0.3-merged"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.to('cuda')
tokenizer = AutoTokenizer.from_pretrained(model_id)
```
3. Prepare your data with a system prompt and an array of json openapi compatible: only the description key should be in Italian all the json in english a part all description keys.
```python
json_arr = [{"name": "order_dinner", "description": "Ordina una cena al ristorante", "parameters": {"type": "object", "properties": {"restaurant_name": {"type": "string", "description": "il nome del ristorante", "enum" : ['Bufalo Bill','Pazzas']}}, "required": ["restaurant_name"]}},
{"name": "get_weather", "description": "Ottieni le previsioni del tempo meteorologica", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "Il nome del luogo "}}, "required": ["location"]}},
{"name": "create_product", "description": "Crea un prodotto da vendere", "parameters": {"type": "object", "properties": {"product_name": {"type": "string", "description": "Il nome del prodotto "}, "size": {"type": "string", "description": "la taglia del prodotto"}, "price": {"type": "integer", "description": "Il prezzo del prodotto "}}, "required": ["product_name", "size", "price"]}},
{"name": "get_news", "description": "Dammi le ultime notizie", "parameters": {"type": "object", "properties": {"argument": {"type": "string", "description": "L'argomento su cui fare la ricerca"}}, "required": ["argument"]}},
]
json_string = ' '.join([json.dumps(json_obj) for json_obj in json_arr2])
system_prompt = 'Tu sei un assistenze utile che ha accesso alle seguenti funzioni. Usa le funzioni solo se necessario - \n ' + json_string + ' \n '
system_prompt
```
4. Call the model
```python
def generate_text():
prompt = tokenizer.apply_chat_template(test_message2, tokenize=False)
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
generated_ids = model.generate(**model_inputs, max_new_tokens=1024)
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
text_response = generate_text()
```
5. Parse the response
```python
FN_CALL_DELIMITER = "<<functioncall>>"
def strip_function_calls(content: str) -> list[str]:
"""
Split the content by the function call delimiter and remove empty strings
"""
return [element.replace('\n', '') for element in content.split(FN_CALL_DELIMITER)[1:] if element ]
functions_string = strip_function_calls(text_response)
# Output: [' {"name": "create_product", "arguments": \'{"product_name": "AIR", "size": "L", "price": 100}\'}']
```
6. Create an object representation of the string
```python
# if functions_string contains a function string create a json cleaning
# multiple functions not supported yet
if functions_string:
obj_to_call = json.loads(functions_string[0].replace('\'', ''))
else:
print('nothing to do or return a normal chat response')
# Output: {'name': 'create_product', 'arguments': {'product_name': 'AIR', 'size': 'L', 'price': 100}}
```
7.
```python
def obj_to_func(obj):
arguments_keys = obj['arguments'].keys()
params = []
for key in arguments_keys:
param = f'{key}=\"{obj["arguments"][key]}\"'
params.append(param)
func_params = ','.join(params)
print(f'{obj["name"]}({func_params})')
return f'{obj["name"]}({func_params})'
func_str = obj_to_func(obj_to_call)
openai_response = {
"index": 0,
"message": {
"role": "assistant",
"content": func_str,
"function_call": [
obj_to_call
]
},
"finish_reason": "stop"
}
'''
Output OpenAI compatible Dictionary
{'index': 0,
'message': {
'role': 'assistant',
'content': 'create_product(product_name="AIR",size="L",price="100")',
'function_call': [{'name': 'create_product', 'arguments': {'product_name': 'AIR', 'size': 'L', 'price': 100}}]
},
'finish_reason': 'stop'
}
'''
```
JSON to be OpenAI compatible.
## Limitation
The model has some bug and some unexpected behaviour for example the more json you pass the less accurate it become filling the json output but
the interesting thing is that those are pattern that i did not consider in the data. It will be enough to improove the cases in the data to fix the bugs.
Stay tuned for a better version soon.
## License
Zefiro-functioncalling is distributed under the Apache 2.0 license as the base model Gorilla-LLM v0.2. This software incorporates elements from the Deepseek model. Consequently, the licensing of Gorilla OpenFunctions v2 adheres to the Apache 2.0 license, with additional terms as outlined in [Appendix A](https://github.com/deepseek-ai/DeepSeek-LLM/blob/6712a86bfb7dd25c73383c5ad2eb7a8db540258b/LICENSE-MODEL) of the Deepseek license.
## Contributing
Please email us your comments, criticism, and questions. More information about the project can be found at [https://zefiro.ai](https://zefiro.ai)
## Citation
This work is based on Gorilla an open source effort from UC Berkeley and we welcome contributors.
|