gkudirka commited on
Commit
122685f
1 Parent(s): b210861

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:1M<n<10M
9
+ - loss:CoSENTLoss
10
+ metrics:
11
+ - pearson_cosine
12
+ - spearman_cosine
13
+ - pearson_manhattan
14
+ - spearman_manhattan
15
+ - pearson_euclidean
16
+ - spearman_euclidean
17
+ - pearson_dot
18
+ - spearman_dot
19
+ - pearson_max
20
+ - spearman_max
21
+ base_model: distilbert/distilbert-base-uncased
22
+ widget:
23
+ - source_sentence: B C C_L CENTER TUNNEL VERT Other XXXX GENERIC G-S
24
+ sentences:
25
+ - T L ENG TO RAD SWITCH 90 Deg Front 2015 P552 VOLTS
26
+ - T RCM ENS 071 RCM ENS EFPR VOLT 90 Deg Front 2021 CX430 VOLTS
27
+ - T L ROCKER AT B PILLAR LONG 90 Deg Front 2020 V363N G-S
28
+ - source_sentence: T L F DUMMY PELVIS LAT 90 Deg Front 2021 P702 G-S
29
+ sentences:
30
+ - T L F DUMMY PELVIS LAT 90 Deg Front 2021 CX727 G-S
31
+ - T FIXTURE BASE FRONT ACCEL VERT ACCEL Linear Test 2025 U717 G-S
32
+ - T R ROCKER AT B_PILLAR LONG 30 Deg Front Angular Right 2025 CX430 G-S
33
+ - source_sentence: T L F DUMMY PELVIS LAT 90 Deg Front 2021 CX727 G-S
34
+ sentences:
35
+ - T R F DUMMY PELVIS LAT 90 Deg Front 2021 P702 G-S
36
+ - T L F DUMMY PELVIS LONG 30 Deg Front Angular Left 2020 P558 G-S
37
+ - T R F DUMMY L LOWER TIBIA MY LOAD 90 Deg Front 2022 U553 IN-LBS
38
+ - source_sentence: T R F DUMMY CHEST VERT 90 Deg Front 2021 P702 G-S
39
+ sentences:
40
+ - T R F DUMMY CHEST VERT 90 Deg Front 2015 P552 G-S
41
+ - T L F DUMMY R LOWER TIBIA MX LOAD 90 Deg Front 2021 CX727 IN-LBS
42
+ - T REAR DIFFERENTIAL LONG 30 Deg Front Angular Left 2020 P558 G-S
43
+ - source_sentence: T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S
44
+ sentences:
45
+ - T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS
46
+ - T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S
47
+ - T R F DUMMY CHEST VERT 90 Deg Frontal Impact Simulation 2024 CX727 G-S
48
+ pipeline_tag: sentence-similarity
49
+ model-index:
50
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: sts dev
57
+ type: sts-dev
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.4517523751963131
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.4761555869182568
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: 0.42531457338882206
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: 0.46381946353811704
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: 0.4261708588640235
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: 0.4651666003446995
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: 0.3897944292190218
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: 0.37404050621023377
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: 0.4517523751963131
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: 0.4761555869182568
88
+ name: Spearman Max
89
+ - type: pearson_cosine
90
+ value: 0.4412143708585779
91
+ name: Pearson Cosine
92
+ - type: spearman_cosine
93
+ value: 0.4670631031564122
94
+ name: Spearman Cosine
95
+ - type: pearson_manhattan
96
+ value: 0.4156386809751022
97
+ name: Pearson Manhattan
98
+ - type: spearman_manhattan
99
+ value: 0.4559676784726118
100
+ name: Spearman Manhattan
101
+ - type: pearson_euclidean
102
+ value: 0.41671687323124873
103
+ name: Pearson Euclidean
104
+ - type: spearman_euclidean
105
+ value: 0.45746069501329756
106
+ name: Spearman Euclidean
107
+ - type: pearson_dot
108
+ value: 0.37528926047569405
109
+ name: Pearson Dot
110
+ - type: spearman_dot
111
+ value: 0.36286227520562186
112
+ name: Spearman Dot
113
+ - type: pearson_max
114
+ value: 0.4412143708585779
115
+ name: Pearson Max
116
+ - type: spearman_max
117
+ value: 0.4670631031564122
118
+ name: Spearman Max
119
+ ---
120
+
121
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
122
+
123
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
124
+
125
+ ## Model Details
126
+
127
+ ### Model Description
128
+ - **Model Type:** Sentence Transformer
129
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
130
+ - **Maximum Sequence Length:** 512 tokens
131
+ - **Output Dimensionality:** 768 tokens
132
+ - **Similarity Function:** Cosine Similarity
133
+ <!-- - **Training Dataset:** Unknown -->
134
+ <!-- - **Language:** Unknown -->
135
+ <!-- - **License:** Unknown -->
136
+
137
+ ### Model Sources
138
+
139
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
140
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
141
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
142
+
143
+ ### Full Model Architecture
144
+
145
+ ```
146
+ SentenceTransformer(
147
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
148
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
149
+ )
150
+ ```
151
+
152
+ ## Usage
153
+
154
+ ### Direct Usage (Sentence Transformers)
155
+
156
+ First install the Sentence Transformers library:
157
+
158
+ ```bash
159
+ pip install -U sentence-transformers
160
+ ```
161
+
162
+ Then you can load this model and run inference.
163
+ ```python
164
+ from sentence_transformers import SentenceTransformer
165
+
166
+ # Download from the 🤗 Hub
167
+ model = SentenceTransformer("sentence_transformers_model_id")
168
+ # Run inference
169
+ sentences = [
170
+ 'T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S',
171
+ 'T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS',
172
+ 'T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S',
173
+ ]
174
+ embeddings = model.encode(sentences)
175
+ print(embeddings.shape)
176
+ # [3, 768]
177
+
178
+ # Get the similarity scores for the embeddings
179
+ similarities = model.similarity(embeddings, embeddings)
180
+ print(similarities.shape)
181
+ # [3, 3]
182
+ ```
183
+
184
+ <!--
185
+ ### Direct Usage (Transformers)
186
+
187
+ <details><summary>Click to see the direct usage in Transformers</summary>
188
+
189
+ </details>
190
+ -->
191
+
192
+ <!--
193
+ ### Downstream Usage (Sentence Transformers)
194
+
195
+ You can finetune this model on your own dataset.
196
+
197
+ <details><summary>Click to expand</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Out-of-Scope Use
204
+
205
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
206
+ -->
207
+
208
+ ## Evaluation
209
+
210
+ ### Metrics
211
+
212
+ #### Semantic Similarity
213
+ * Dataset: `sts-dev`
214
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
215
+
216
+ | Metric | Value |
217
+ |:--------------------|:-----------|
218
+ | pearson_cosine | 0.4518 |
219
+ | **spearman_cosine** | **0.4762** |
220
+ | pearson_manhattan | 0.4253 |
221
+ | spearman_manhattan | 0.4638 |
222
+ | pearson_euclidean | 0.4262 |
223
+ | spearman_euclidean | 0.4652 |
224
+ | pearson_dot | 0.3898 |
225
+ | spearman_dot | 0.374 |
226
+ | pearson_max | 0.4518 |
227
+ | spearman_max | 0.4762 |
228
+
229
+ #### Semantic Similarity
230
+ * Dataset: `sts-dev`
231
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
232
+
233
+ | Metric | Value |
234
+ |:--------------------|:-----------|
235
+ | pearson_cosine | 0.4412 |
236
+ | **spearman_cosine** | **0.4671** |
237
+ | pearson_manhattan | 0.4156 |
238
+ | spearman_manhattan | 0.456 |
239
+ | pearson_euclidean | 0.4167 |
240
+ | spearman_euclidean | 0.4575 |
241
+ | pearson_dot | 0.3753 |
242
+ | spearman_dot | 0.3629 |
243
+ | pearson_max | 0.4412 |
244
+ | spearman_max | 0.4671 |
245
+
246
+ <!--
247
+ ## Bias, Risks and Limitations
248
+
249
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
250
+ -->
251
+
252
+ <!--
253
+ ### Recommendations
254
+
255
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
256
+ -->
257
+
258
+ ## Training Details
259
+
260
+ ### Training Dataset
261
+
262
+ #### Unnamed Dataset
263
+
264
+
265
+ * Size: 8,081,275 training samples
266
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
267
+ * Approximate statistics based on the first 1000 samples:
268
+ | | sentence1 | sentence2 | score |
269
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
270
+ | type | string | string | float |
271
+ | details | <ul><li>min: 23 tokens</li><li>mean: 31.48 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 30.06 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
272
+ * Samples:
273
+ | sentence1 | sentence2 | score |
274
+ |:--------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------|
275
+ | <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T SCS R2 HY REF 059 R C PLR REF Y SM LAT 90 Deg / Left Side Decel-4g 2020 CX483 G-S</code> | <code>0.21129386503072142</code> |
276
+ | <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T R F DUMMY PELVIS VERT 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S</code> | <code>0.4972955033248179</code> |
277
+ | <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T SCS L1 HY REF 053 L B PLR REF Y SM LAT 90 Deg Front Bumper Override 2021 CX727 G-S</code> | <code>0.5701051768787058</code> |
278
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
279
+ ```json
280
+ {
281
+ "scale": 20.0,
282
+ "similarity_fct": "pairwise_cos_sim"
283
+ }
284
+ ```
285
+
286
+ ### Evaluation Dataset
287
+
288
+ #### Unnamed Dataset
289
+
290
+
291
+ * Size: 1,726,581 evaluation samples
292
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
293
+ * Approximate statistics based on the first 1000 samples:
294
+ | | sentence1 | sentence2 | score |
295
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
296
+ | type | string | string | float |
297
+ | details | <ul><li>min: 22 tokens</li><li>mean: 25.0 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.04 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
298
+ * Samples:
299
+ | sentence1 | sentence2 | score |
300
+ |:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------|
301
+ | <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T L F DUMMY T12 LONG 27 Deg Crabbed Left Side NHTSA 214 MDB to vehicle 2015 P552 G-S</code> | <code>0.6835618484879796</code> |
302
+ | <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T L F DUMMY R FEMUR LONG 90 Deg Front 2022 U553 G-S</code> | <code>0.666531064739</code> |
303
+ | <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T R F DUMMY NECK UPPER MZ LOAD 90 Deg Front 2019 P375ICA IN-LBS</code> | <code>0.46391834212079874</code> |
304
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
305
+ ```json
306
+ {
307
+ "scale": 20.0,
308
+ "similarity_fct": "pairwise_cos_sim"
309
+ }
310
+ ```
311
+
312
+ ### Training Hyperparameters
313
+ #### Non-Default Hyperparameters
314
+
315
+ - `per_device_train_batch_size`: 32
316
+ - `per_device_eval_batch_size`: 32
317
+ - `learning_rate`: 3e-05
318
+ - `num_train_epochs`: 4
319
+ - `warmup_ratio`: 0.1
320
+ - `fp16`: True
321
+
322
+ #### All Hyperparameters
323
+ <details><summary>Click to expand</summary>
324
+
325
+ - `overwrite_output_dir`: False
326
+ - `do_predict`: False
327
+ - `prediction_loss_only`: True
328
+ - `per_device_train_batch_size`: 32
329
+ - `per_device_eval_batch_size`: 32
330
+ - `per_gpu_train_batch_size`: None
331
+ - `per_gpu_eval_batch_size`: None
332
+ - `gradient_accumulation_steps`: 1
333
+ - `eval_accumulation_steps`: None
334
+ - `learning_rate`: 3e-05
335
+ - `weight_decay`: 0.0
336
+ - `adam_beta1`: 0.9
337
+ - `adam_beta2`: 0.999
338
+ - `adam_epsilon`: 1e-08
339
+ - `max_grad_norm`: 1.0
340
+ - `num_train_epochs`: 4
341
+ - `max_steps`: -1
342
+ - `lr_scheduler_type`: linear
343
+ - `warmup_ratio`: 0.1
344
+ - `warmup_steps`: 0
345
+ - `log_level`: passive
346
+ - `log_level_replica`: warning
347
+ - `log_on_each_node`: True
348
+ - `logging_nan_inf_filter`: True
349
+ - `save_safetensors`: True
350
+ - `save_on_each_node`: False
351
+ - `no_cuda`: False
352
+ - `use_cpu`: False
353
+ - `use_mps_device`: False
354
+ - `seed`: 42
355
+ - `data_seed`: None
356
+ - `jit_mode_eval`: False
357
+ - `use_ipex`: False
358
+ - `bf16`: False
359
+ - `fp16`: True
360
+ - `fp16_opt_level`: O1
361
+ - `half_precision_backend`: auto
362
+ - `bf16_full_eval`: False
363
+ - `fp16_full_eval`: False
364
+ - `tf32`: None
365
+ - `local_rank`: 4
366
+ - `ddp_backend`: None
367
+ - `tpu_num_cores`: None
368
+ - `tpu_metrics_debug`: False
369
+ - `debug`: []
370
+ - `dataloader_drop_last`: True
371
+ - `dataloader_num_workers`: 0
372
+ - `past_index`: -1
373
+ - `disable_tqdm`: False
374
+ - `remove_unused_columns`: True
375
+ - `label_names`: None
376
+ - `load_best_model_at_end`: False
377
+ - `ignore_data_skip`: False
378
+ - `fsdp`: []
379
+ - `fsdp_min_num_params`: 0
380
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}
381
+ - `fsdp_transformer_layer_cls_to_wrap`: None
382
+ - `deepspeed`: None
383
+ - `label_smoothing_factor`: 0.0
384
+ - `optim`: adamw_torch
385
+ - `optim_args`: None
386
+ - `adafactor`: False
387
+ - `group_by_length`: False
388
+ - `length_column_name`: length
389
+ - `ddp_find_unused_parameters`: None
390
+ - `ddp_bucket_cap_mb`: None
391
+ - `ddp_broadcast_buffers`: False
392
+ - `dataloader_pin_memory`: True
393
+ - `skip_memory_metrics`: True
394
+ - `use_legacy_prediction_loop`: False
395
+ - `push_to_hub`: False
396
+ - `resume_from_checkpoint`: None
397
+ - `hub_model_id`: None
398
+ - `hub_strategy`: every_save
399
+ - `hub_private_repo`: False
400
+ - `hub_always_push`: False
401
+ - `gradient_checkpointing`: False
402
+ - `gradient_checkpointing_kwargs`: None
403
+ - `include_inputs_for_metrics`: False
404
+ - `fp16_backend`: auto
405
+ - `push_to_hub_model_id`: None
406
+ - `push_to_hub_organization`: None
407
+ - `mp_parameters`:
408
+ - `auto_find_batch_size`: False
409
+ - `full_determinism`: False
410
+ - `torchdynamo`: None
411
+ - `ray_scope`: last
412
+ - `ddp_timeout`: 1800
413
+ - `torch_compile`: False
414
+ - `torch_compile_backend`: None
415
+ - `torch_compile_mode`: None
416
+ - `dispatch_batches`: None
417
+ - `split_batches`: False
418
+ - `include_tokens_per_second`: False
419
+ - `neftune_noise_alpha`: None
420
+ - `batch_sampler`: batch_sampler
421
+ - `multi_dataset_batch_sampler`: proportional
422
+
423
+ </details>
424
+
425
+ ### Training Logs
426
+ <details><summary>Click to expand</summary>
427
+
428
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
429
+ |:------:|:------:|:-------------:|:------:|:-----------------------:|
430
+ | 0.0317 | 1000 | 6.3069 | - | - |
431
+ | 0.0634 | 2000 | 6.1793 | - | - |
432
+ | 0.0950 | 3000 | 6.1607 | - | - |
433
+ | 0.1267 | 4000 | 6.1512 | - | - |
434
+ | 0.1584 | 5000 | 6.1456 | - | - |
435
+ | 0.1901 | 6000 | 6.1419 | - | - |
436
+ | 0.2218 | 7000 | 6.1398 | - | - |
437
+ | 0.2534 | 8000 | 6.1377 | - | - |
438
+ | 0.2851 | 9000 | 6.1352 | - | - |
439
+ | 0.3168 | 10000 | 6.1338 | - | - |
440
+ | 0.3485 | 11000 | 6.1332 | - | - |
441
+ | 0.3801 | 12000 | 6.1309 | - | - |
442
+ | 0.4118 | 13000 | 6.1315 | - | - |
443
+ | 0.4435 | 14000 | 6.1283 | - | - |
444
+ | 0.4752 | 15000 | 6.129 | - | - |
445
+ | 0.5069 | 16000 | 6.1271 | - | - |
446
+ | 0.5385 | 17000 | 6.1265 | - | - |
447
+ | 0.5702 | 18000 | 6.1238 | - | - |
448
+ | 0.6019 | 19000 | 6.1234 | - | - |
449
+ | 0.6336 | 20000 | 6.1225 | - | - |
450
+ | 0.6653 | 21000 | 6.1216 | - | - |
451
+ | 0.6969 | 22000 | 6.1196 | - | - |
452
+ | 0.7286 | 23000 | 6.1198 | - | - |
453
+ | 0.7603 | 24000 | 6.1178 | - | - |
454
+ | 0.7920 | 25000 | 6.117 | - | - |
455
+ | 0.8236 | 26000 | 6.1167 | - | - |
456
+ | 0.8553 | 27000 | 6.1165 | - | - |
457
+ | 0.8870 | 28000 | 6.1149 | - | - |
458
+ | 0.9187 | 29000 | 6.1146 | - | - |
459
+ | 0.9504 | 30000 | 6.113 | - | - |
460
+ | 0.9820 | 31000 | 6.1143 | - | - |
461
+ | 1.0 | 31567 | - | 6.1150 | 0.4829 |
462
+ | 1.0137 | 32000 | 6.1115 | - | - |
463
+ | 1.0454 | 33000 | 6.111 | - | - |
464
+ | 1.0771 | 34000 | 6.1091 | - | - |
465
+ | 1.1088 | 35000 | 6.1094 | - | - |
466
+ | 1.1404 | 36000 | 6.1078 | - | - |
467
+ | 1.1721 | 37000 | 6.1095 | - | - |
468
+ | 1.2038 | 38000 | 6.106 | - | - |
469
+ | 1.2355 | 39000 | 6.1071 | - | - |
470
+ | 1.2671 | 40000 | 6.1073 | - | - |
471
+ | 1.2988 | 41000 | 6.1064 | - | - |
472
+ | 1.3305 | 42000 | 6.1047 | - | - |
473
+ | 1.3622 | 43000 | 6.1054 | - | - |
474
+ | 1.3939 | 44000 | 6.1048 | - | - |
475
+ | 1.4255 | 45000 | 6.1053 | - | - |
476
+ | 1.4572 | 46000 | 6.1058 | - | - |
477
+ | 1.4889 | 47000 | 6.1037 | - | - |
478
+ | 1.5206 | 48000 | 6.1041 | - | - |
479
+ | 1.5523 | 49000 | 6.1023 | - | - |
480
+ | 1.5839 | 50000 | 6.1018 | - | - |
481
+ | 1.6156 | 51000 | 6.104 | - | - |
482
+ | 1.6473 | 52000 | 6.1004 | - | - |
483
+ | 1.6790 | 53000 | 6.1027 | - | - |
484
+ | 1.7106 | 54000 | 6.1017 | - | - |
485
+ | 1.7423 | 55000 | 6.1011 | - | - |
486
+ | 1.7740 | 56000 | 6.1002 | - | - |
487
+ | 1.8057 | 57000 | 6.0994 | - | - |
488
+ | 1.8374 | 58000 | 6.0985 | - | - |
489
+ | 1.8690 | 59000 | 6.0986 | - | - |
490
+ | 1.9007 | 60000 | 6.1006 | - | - |
491
+ | 1.9324 | 61000 | 6.0983 | - | - |
492
+ | 1.9641 | 62000 | 6.0983 | - | - |
493
+ | 1.9958 | 63000 | 6.0973 | - | - |
494
+ | 2.0 | 63134 | - | 6.1193 | 0.4828 |
495
+ | 2.0274 | 64000 | 6.0943 | - | - |
496
+ | 2.0591 | 65000 | 6.0941 | - | - |
497
+ | 2.0908 | 66000 | 6.0936 | - | - |
498
+ | 2.1225 | 67000 | 6.0909 | - | - |
499
+ | 2.1541 | 68000 | 6.0925 | - | - |
500
+ | 2.1858 | 69000 | 6.0932 | - | - |
501
+ | 2.2175 | 70000 | 6.0939 | - | - |
502
+ | 2.2492 | 71000 | 6.0919 | - | - |
503
+ | 2.2809 | 72000 | 6.0932 | - | - |
504
+ | 2.3125 | 73000 | 6.0916 | - | - |
505
+ | 2.3442 | 74000 | 6.0919 | - | - |
506
+ | 2.3759 | 75000 | 6.0919 | - | - |
507
+ | 2.4076 | 76000 | 6.0911 | - | - |
508
+ | 2.4393 | 77000 | 6.0924 | - | - |
509
+ | 2.4709 | 78000 | 6.0911 | - | - |
510
+ | 2.5026 | 79000 | 6.0922 | - | - |
511
+ | 2.5343 | 80000 | 6.0926 | - | - |
512
+ | 2.5660 | 81000 | 6.0911 | - | - |
513
+ | 2.5976 | 82000 | 6.0897 | - | - |
514
+ | 2.6293 | 83000 | 6.0922 | - | - |
515
+ | 2.6610 | 84000 | 6.0908 | - | - |
516
+ | 2.6927 | 85000 | 6.0884 | - | - |
517
+ | 2.7244 | 86000 | 6.0907 | - | - |
518
+ | 2.7560 | 87000 | 6.0904 | - | - |
519
+ | 2.7877 | 88000 | 6.0881 | - | - |
520
+ | 2.8194 | 89000 | 6.0902 | - | - |
521
+ | 2.8511 | 90000 | 6.088 | - | - |
522
+ | 2.8828 | 91000 | 6.0888 | - | - |
523
+ | 2.9144 | 92000 | 6.0884 | - | - |
524
+ | 2.9461 | 93000 | 6.0881 | - | - |
525
+ | 2.9778 | 94000 | 6.0896 | - | - |
526
+ | 3.0 | 94701 | - | 6.1225 | 0.4788 |
527
+ | 3.0095 | 95000 | 6.0857 | - | - |
528
+ | 3.0412 | 96000 | 6.0838 | - | - |
529
+ | 3.0728 | 97000 | 6.0843 | - | - |
530
+ | 3.1045 | 98000 | 6.0865 | - | - |
531
+ | 3.1362 | 99000 | 6.0827 | - | - |
532
+ | 3.1679 | 100000 | 6.0836 | - | - |
533
+ | 3.1995 | 101000 | 6.0837 | - | - |
534
+ | 3.2312 | 102000 | 6.0836 | - | - |
535
+ | 3.2629 | 103000 | 6.0837 | - | - |
536
+ | 3.2946 | 104000 | 6.084 | - | - |
537
+ | 3.3263 | 105000 | 6.0836 | - | - |
538
+ | 3.3579 | 106000 | 6.0808 | - | - |
539
+ | 3.3896 | 107000 | 6.0821 | - | - |
540
+ | 3.4213 | 108000 | 6.0817 | - | - |
541
+ | 3.4530 | 109000 | 6.082 | - | - |
542
+ | 3.4847 | 110000 | 6.083 | - | - |
543
+ | 3.5163 | 111000 | 6.0829 | - | - |
544
+ | 3.5480 | 112000 | 6.0832 | - | - |
545
+ | 3.5797 | 113000 | 6.0829 | - | - |
546
+ | 3.6114 | 114000 | 6.0837 | - | - |
547
+ | 3.6430 | 115000 | 6.082 | - | - |
548
+ | 3.6747 | 116000 | 6.0823 | - | - |
549
+ | 3.7064 | 117000 | 6.082 | - | - |
550
+ | 3.7381 | 118000 | 6.0833 | - | - |
551
+ | 3.7698 | 119000 | 6.0831 | - | - |
552
+ | 3.8014 | 120000 | 6.0814 | - | - |
553
+ | 3.8331 | 121000 | 6.0813 | - | - |
554
+ | 3.8648 | 122000 | 6.0797 | - | - |
555
+ | 3.8965 | 123000 | 6.0793 | - | - |
556
+ | 3.9282 | 124000 | 6.0818 | - | - |
557
+ | 3.9598 | 125000 | 6.0806 | - | - |
558
+ | 3.9915 | 126000 | 6.08 | - | - |
559
+ | 4.0 | 126268 | - | 6.1266 | 0.4671 |
560
+
561
+ </details>
562
+
563
+ ### Framework Versions
564
+ - Python: 3.10.6
565
+ - Sentence Transformers: 3.0.0
566
+ - Transformers: 4.35.0
567
+ - PyTorch: 2.1.0a0+4136153
568
+ - Accelerate: 0.30.1
569
+ - Datasets: 2.14.1
570
+ - Tokenizers: 0.14.1
571
+
572
+ ## Citation
573
+
574
+ ### BibTeX
575
+
576
+ #### Sentence Transformers
577
+ ```bibtex
578
+ @inproceedings{reimers-2019-sentence-bert,
579
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
580
+ author = "Reimers, Nils and Gurevych, Iryna",
581
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
582
+ month = "11",
583
+ year = "2019",
584
+ publisher = "Association for Computational Linguistics",
585
+ url = "https://arxiv.org/abs/1908.10084",
586
+ }
587
+ ```
588
+
589
+ #### CoSENTLoss
590
+ ```bibtex
591
+ @online{kexuefm-8847,
592
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
593
+ author={Su Jianlin},
594
+ year={2022},
595
+ month={Jan},
596
+ url={https://kexue.fm/archives/8847},
597
+ }
598
+ ```
599
+
600
+ <!--
601
+ ## Glossary
602
+
603
+ *Clearly define terms in order to be accessible across audiences.*
604
+ -->
605
+
606
+ <!--
607
+ ## Model Card Authors
608
+
609
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
610
+ -->
611
+
612
+ <!--
613
+ ## Model Card Contact
614
+
615
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
616
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./encoder/training_stsbenchmark_3e5_4epochdistilbert-base-uncased-2024-07-03_01-28-04/final",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.0",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.35.0",
5
+ "pytorch": "2.1.0a0+4136153"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da9d50f2d6244bb0153ecf16b9c34ac259783173fb15a9aa1522ba1fc8a8e59e
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff