Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +616 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:1M<n<10M
|
9 |
+
- loss:CoSENTLoss
|
10 |
+
metrics:
|
11 |
+
- pearson_cosine
|
12 |
+
- spearman_cosine
|
13 |
+
- pearson_manhattan
|
14 |
+
- spearman_manhattan
|
15 |
+
- pearson_euclidean
|
16 |
+
- spearman_euclidean
|
17 |
+
- pearson_dot
|
18 |
+
- spearman_dot
|
19 |
+
- pearson_max
|
20 |
+
- spearman_max
|
21 |
+
base_model: distilbert/distilbert-base-uncased
|
22 |
+
widget:
|
23 |
+
- source_sentence: B C C_L CENTER TUNNEL VERT Other XXXX GENERIC G-S
|
24 |
+
sentences:
|
25 |
+
- T L ENG TO RAD SWITCH 90 Deg Front 2015 P552 VOLTS
|
26 |
+
- T RCM ENS 071 RCM ENS EFPR VOLT 90 Deg Front 2021 CX430 VOLTS
|
27 |
+
- T L ROCKER AT B PILLAR LONG 90 Deg Front 2020 V363N G-S
|
28 |
+
- source_sentence: T L F DUMMY PELVIS LAT 90 Deg Front 2021 P702 G-S
|
29 |
+
sentences:
|
30 |
+
- T L F DUMMY PELVIS LAT 90 Deg Front 2021 CX727 G-S
|
31 |
+
- T FIXTURE BASE FRONT ACCEL VERT ACCEL Linear Test 2025 U717 G-S
|
32 |
+
- T R ROCKER AT B_PILLAR LONG 30 Deg Front Angular Right 2025 CX430 G-S
|
33 |
+
- source_sentence: T L F DUMMY PELVIS LAT 90 Deg Front 2021 CX727 G-S
|
34 |
+
sentences:
|
35 |
+
- T R F DUMMY PELVIS LAT 90 Deg Front 2021 P702 G-S
|
36 |
+
- T L F DUMMY PELVIS LONG 30 Deg Front Angular Left 2020 P558 G-S
|
37 |
+
- T R F DUMMY L LOWER TIBIA MY LOAD 90 Deg Front 2022 U553 IN-LBS
|
38 |
+
- source_sentence: T R F DUMMY CHEST VERT 90 Deg Front 2021 P702 G-S
|
39 |
+
sentences:
|
40 |
+
- T R F DUMMY CHEST VERT 90 Deg Front 2015 P552 G-S
|
41 |
+
- T L F DUMMY R LOWER TIBIA MX LOAD 90 Deg Front 2021 CX727 IN-LBS
|
42 |
+
- T REAR DIFFERENTIAL LONG 30 Deg Front Angular Left 2020 P558 G-S
|
43 |
+
- source_sentence: T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S
|
44 |
+
sentences:
|
45 |
+
- T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS
|
46 |
+
- T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S
|
47 |
+
- T R F DUMMY CHEST VERT 90 Deg Frontal Impact Simulation 2024 CX727 G-S
|
48 |
+
pipeline_tag: sentence-similarity
|
49 |
+
model-index:
|
50 |
+
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: semantic-similarity
|
54 |
+
name: Semantic Similarity
|
55 |
+
dataset:
|
56 |
+
name: sts dev
|
57 |
+
type: sts-dev
|
58 |
+
metrics:
|
59 |
+
- type: pearson_cosine
|
60 |
+
value: 0.4517523751963131
|
61 |
+
name: Pearson Cosine
|
62 |
+
- type: spearman_cosine
|
63 |
+
value: 0.4761555869182568
|
64 |
+
name: Spearman Cosine
|
65 |
+
- type: pearson_manhattan
|
66 |
+
value: 0.42531457338882206
|
67 |
+
name: Pearson Manhattan
|
68 |
+
- type: spearman_manhattan
|
69 |
+
value: 0.46381946353811704
|
70 |
+
name: Spearman Manhattan
|
71 |
+
- type: pearson_euclidean
|
72 |
+
value: 0.4261708588640235
|
73 |
+
name: Pearson Euclidean
|
74 |
+
- type: spearman_euclidean
|
75 |
+
value: 0.4651666003446995
|
76 |
+
name: Spearman Euclidean
|
77 |
+
- type: pearson_dot
|
78 |
+
value: 0.3897944292190218
|
79 |
+
name: Pearson Dot
|
80 |
+
- type: spearman_dot
|
81 |
+
value: 0.37404050621023377
|
82 |
+
name: Spearman Dot
|
83 |
+
- type: pearson_max
|
84 |
+
value: 0.4517523751963131
|
85 |
+
name: Pearson Max
|
86 |
+
- type: spearman_max
|
87 |
+
value: 0.4761555869182568
|
88 |
+
name: Spearman Max
|
89 |
+
- type: pearson_cosine
|
90 |
+
value: 0.4412143708585779
|
91 |
+
name: Pearson Cosine
|
92 |
+
- type: spearman_cosine
|
93 |
+
value: 0.4670631031564122
|
94 |
+
name: Spearman Cosine
|
95 |
+
- type: pearson_manhattan
|
96 |
+
value: 0.4156386809751022
|
97 |
+
name: Pearson Manhattan
|
98 |
+
- type: spearman_manhattan
|
99 |
+
value: 0.4559676784726118
|
100 |
+
name: Spearman Manhattan
|
101 |
+
- type: pearson_euclidean
|
102 |
+
value: 0.41671687323124873
|
103 |
+
name: Pearson Euclidean
|
104 |
+
- type: spearman_euclidean
|
105 |
+
value: 0.45746069501329756
|
106 |
+
name: Spearman Euclidean
|
107 |
+
- type: pearson_dot
|
108 |
+
value: 0.37528926047569405
|
109 |
+
name: Pearson Dot
|
110 |
+
- type: spearman_dot
|
111 |
+
value: 0.36286227520562186
|
112 |
+
name: Spearman Dot
|
113 |
+
- type: pearson_max
|
114 |
+
value: 0.4412143708585779
|
115 |
+
name: Pearson Max
|
116 |
+
- type: spearman_max
|
117 |
+
value: 0.4670631031564122
|
118 |
+
name: Spearman Max
|
119 |
+
---
|
120 |
+
|
121 |
+
# SentenceTransformer based on distilbert/distilbert-base-uncased
|
122 |
+
|
123 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
124 |
+
|
125 |
+
## Model Details
|
126 |
+
|
127 |
+
### Model Description
|
128 |
+
- **Model Type:** Sentence Transformer
|
129 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
130 |
+
- **Maximum Sequence Length:** 512 tokens
|
131 |
+
- **Output Dimensionality:** 768 tokens
|
132 |
+
- **Similarity Function:** Cosine Similarity
|
133 |
+
<!-- - **Training Dataset:** Unknown -->
|
134 |
+
<!-- - **Language:** Unknown -->
|
135 |
+
<!-- - **License:** Unknown -->
|
136 |
+
|
137 |
+
### Model Sources
|
138 |
+
|
139 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
140 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
141 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
142 |
+
|
143 |
+
### Full Model Architecture
|
144 |
+
|
145 |
+
```
|
146 |
+
SentenceTransformer(
|
147 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
148 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
149 |
+
)
|
150 |
+
```
|
151 |
+
|
152 |
+
## Usage
|
153 |
+
|
154 |
+
### Direct Usage (Sentence Transformers)
|
155 |
+
|
156 |
+
First install the Sentence Transformers library:
|
157 |
+
|
158 |
+
```bash
|
159 |
+
pip install -U sentence-transformers
|
160 |
+
```
|
161 |
+
|
162 |
+
Then you can load this model and run inference.
|
163 |
+
```python
|
164 |
+
from sentence_transformers import SentenceTransformer
|
165 |
+
|
166 |
+
# Download from the 🤗 Hub
|
167 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
168 |
+
# Run inference
|
169 |
+
sentences = [
|
170 |
+
'T ENGINE TRANS TOP LAT 90 Deg Front 2025 U717 G-S',
|
171 |
+
'T R F ACTIVE VENT SQUIB VOLT 90 Deg Front 2021 P702 VOLTS',
|
172 |
+
'T ENGINE TRANS TOP LAT 30 Deg Front Angular Left 2020 P558 G-S',
|
173 |
+
]
|
174 |
+
embeddings = model.encode(sentences)
|
175 |
+
print(embeddings.shape)
|
176 |
+
# [3, 768]
|
177 |
+
|
178 |
+
# Get the similarity scores for the embeddings
|
179 |
+
similarities = model.similarity(embeddings, embeddings)
|
180 |
+
print(similarities.shape)
|
181 |
+
# [3, 3]
|
182 |
+
```
|
183 |
+
|
184 |
+
<!--
|
185 |
+
### Direct Usage (Transformers)
|
186 |
+
|
187 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
188 |
+
|
189 |
+
</details>
|
190 |
+
-->
|
191 |
+
|
192 |
+
<!--
|
193 |
+
### Downstream Usage (Sentence Transformers)
|
194 |
+
|
195 |
+
You can finetune this model on your own dataset.
|
196 |
+
|
197 |
+
<details><summary>Click to expand</summary>
|
198 |
+
|
199 |
+
</details>
|
200 |
+
-->
|
201 |
+
|
202 |
+
<!--
|
203 |
+
### Out-of-Scope Use
|
204 |
+
|
205 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
206 |
+
-->
|
207 |
+
|
208 |
+
## Evaluation
|
209 |
+
|
210 |
+
### Metrics
|
211 |
+
|
212 |
+
#### Semantic Similarity
|
213 |
+
* Dataset: `sts-dev`
|
214 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
215 |
+
|
216 |
+
| Metric | Value |
|
217 |
+
|:--------------------|:-----------|
|
218 |
+
| pearson_cosine | 0.4518 |
|
219 |
+
| **spearman_cosine** | **0.4762** |
|
220 |
+
| pearson_manhattan | 0.4253 |
|
221 |
+
| spearman_manhattan | 0.4638 |
|
222 |
+
| pearson_euclidean | 0.4262 |
|
223 |
+
| spearman_euclidean | 0.4652 |
|
224 |
+
| pearson_dot | 0.3898 |
|
225 |
+
| spearman_dot | 0.374 |
|
226 |
+
| pearson_max | 0.4518 |
|
227 |
+
| spearman_max | 0.4762 |
|
228 |
+
|
229 |
+
#### Semantic Similarity
|
230 |
+
* Dataset: `sts-dev`
|
231 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
232 |
+
|
233 |
+
| Metric | Value |
|
234 |
+
|:--------------------|:-----------|
|
235 |
+
| pearson_cosine | 0.4412 |
|
236 |
+
| **spearman_cosine** | **0.4671** |
|
237 |
+
| pearson_manhattan | 0.4156 |
|
238 |
+
| spearman_manhattan | 0.456 |
|
239 |
+
| pearson_euclidean | 0.4167 |
|
240 |
+
| spearman_euclidean | 0.4575 |
|
241 |
+
| pearson_dot | 0.3753 |
|
242 |
+
| spearman_dot | 0.3629 |
|
243 |
+
| pearson_max | 0.4412 |
|
244 |
+
| spearman_max | 0.4671 |
|
245 |
+
|
246 |
+
<!--
|
247 |
+
## Bias, Risks and Limitations
|
248 |
+
|
249 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
250 |
+
-->
|
251 |
+
|
252 |
+
<!--
|
253 |
+
### Recommendations
|
254 |
+
|
255 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
256 |
+
-->
|
257 |
+
|
258 |
+
## Training Details
|
259 |
+
|
260 |
+
### Training Dataset
|
261 |
+
|
262 |
+
#### Unnamed Dataset
|
263 |
+
|
264 |
+
|
265 |
+
* Size: 8,081,275 training samples
|
266 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
267 |
+
* Approximate statistics based on the first 1000 samples:
|
268 |
+
| | sentence1 | sentence2 | score |
|
269 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
270 |
+
| type | string | string | float |
|
271 |
+
| details | <ul><li>min: 23 tokens</li><li>mean: 31.48 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 30.06 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
|
272 |
+
* Samples:
|
273 |
+
| sentence1 | sentence2 | score |
|
274 |
+
|:--------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------|
|
275 |
+
| <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T SCS R2 HY REF 059 R C PLR REF Y SM LAT 90 Deg / Left Side Decel-4g 2020 CX483 G-S</code> | <code>0.21129386503072142</code> |
|
276 |
+
| <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T R F DUMMY PELVIS VERT 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S</code> | <code>0.4972955033248179</code> |
|
277 |
+
| <code>T L F DUMMY PELVIS VERT Dynamic Seat Sled Test 2025 U718 G-S</code> | <code>T SCS L1 HY REF 053 L B PLR REF Y SM LAT 90 Deg Front Bumper Override 2021 CX727 G-S</code> | <code>0.5701051768787058</code> |
|
278 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
279 |
+
```json
|
280 |
+
{
|
281 |
+
"scale": 20.0,
|
282 |
+
"similarity_fct": "pairwise_cos_sim"
|
283 |
+
}
|
284 |
+
```
|
285 |
+
|
286 |
+
### Evaluation Dataset
|
287 |
+
|
288 |
+
#### Unnamed Dataset
|
289 |
+
|
290 |
+
|
291 |
+
* Size: 1,726,581 evaluation samples
|
292 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
293 |
+
* Approximate statistics based on the first 1000 samples:
|
294 |
+
| | sentence1 | sentence2 | score |
|
295 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
296 |
+
| type | string | string | float |
|
297 |
+
| details | <ul><li>min: 22 tokens</li><li>mean: 25.0 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.04 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
|
298 |
+
* Samples:
|
299 |
+
| sentence1 | sentence2 | score |
|
300 |
+
|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------|
|
301 |
+
| <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T L F DUMMY T12 LONG 27 Deg Crabbed Left Side NHTSA 214 MDB to vehicle 2015 P552 G-S</code> | <code>0.6835618484879796</code> |
|
302 |
+
| <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T L F DUMMY R FEMUR LONG 90 Deg Front 2022 U553 G-S</code> | <code>0.666531064739</code> |
|
303 |
+
| <code>T R F ADAPTIVE TETHER VENT SQUIB VOLT 30 Deg Front Angular Right 20xx GENERIC VOLTS</code> | <code>T R F DUMMY NECK UPPER MZ LOAD 90 Deg Front 2019 P375ICA IN-LBS</code> | <code>0.46391834212079874</code> |
|
304 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
305 |
+
```json
|
306 |
+
{
|
307 |
+
"scale": 20.0,
|
308 |
+
"similarity_fct": "pairwise_cos_sim"
|
309 |
+
}
|
310 |
+
```
|
311 |
+
|
312 |
+
### Training Hyperparameters
|
313 |
+
#### Non-Default Hyperparameters
|
314 |
+
|
315 |
+
- `per_device_train_batch_size`: 32
|
316 |
+
- `per_device_eval_batch_size`: 32
|
317 |
+
- `learning_rate`: 3e-05
|
318 |
+
- `num_train_epochs`: 4
|
319 |
+
- `warmup_ratio`: 0.1
|
320 |
+
- `fp16`: True
|
321 |
+
|
322 |
+
#### All Hyperparameters
|
323 |
+
<details><summary>Click to expand</summary>
|
324 |
+
|
325 |
+
- `overwrite_output_dir`: False
|
326 |
+
- `do_predict`: False
|
327 |
+
- `prediction_loss_only`: True
|
328 |
+
- `per_device_train_batch_size`: 32
|
329 |
+
- `per_device_eval_batch_size`: 32
|
330 |
+
- `per_gpu_train_batch_size`: None
|
331 |
+
- `per_gpu_eval_batch_size`: None
|
332 |
+
- `gradient_accumulation_steps`: 1
|
333 |
+
- `eval_accumulation_steps`: None
|
334 |
+
- `learning_rate`: 3e-05
|
335 |
+
- `weight_decay`: 0.0
|
336 |
+
- `adam_beta1`: 0.9
|
337 |
+
- `adam_beta2`: 0.999
|
338 |
+
- `adam_epsilon`: 1e-08
|
339 |
+
- `max_grad_norm`: 1.0
|
340 |
+
- `num_train_epochs`: 4
|
341 |
+
- `max_steps`: -1
|
342 |
+
- `lr_scheduler_type`: linear
|
343 |
+
- `warmup_ratio`: 0.1
|
344 |
+
- `warmup_steps`: 0
|
345 |
+
- `log_level`: passive
|
346 |
+
- `log_level_replica`: warning
|
347 |
+
- `log_on_each_node`: True
|
348 |
+
- `logging_nan_inf_filter`: True
|
349 |
+
- `save_safetensors`: True
|
350 |
+
- `save_on_each_node`: False
|
351 |
+
- `no_cuda`: False
|
352 |
+
- `use_cpu`: False
|
353 |
+
- `use_mps_device`: False
|
354 |
+
- `seed`: 42
|
355 |
+
- `data_seed`: None
|
356 |
+
- `jit_mode_eval`: False
|
357 |
+
- `use_ipex`: False
|
358 |
+
- `bf16`: False
|
359 |
+
- `fp16`: True
|
360 |
+
- `fp16_opt_level`: O1
|
361 |
+
- `half_precision_backend`: auto
|
362 |
+
- `bf16_full_eval`: False
|
363 |
+
- `fp16_full_eval`: False
|
364 |
+
- `tf32`: None
|
365 |
+
- `local_rank`: 4
|
366 |
+
- `ddp_backend`: None
|
367 |
+
- `tpu_num_cores`: None
|
368 |
+
- `tpu_metrics_debug`: False
|
369 |
+
- `debug`: []
|
370 |
+
- `dataloader_drop_last`: True
|
371 |
+
- `dataloader_num_workers`: 0
|
372 |
+
- `past_index`: -1
|
373 |
+
- `disable_tqdm`: False
|
374 |
+
- `remove_unused_columns`: True
|
375 |
+
- `label_names`: None
|
376 |
+
- `load_best_model_at_end`: False
|
377 |
+
- `ignore_data_skip`: False
|
378 |
+
- `fsdp`: []
|
379 |
+
- `fsdp_min_num_params`: 0
|
380 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}
|
381 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
382 |
+
- `deepspeed`: None
|
383 |
+
- `label_smoothing_factor`: 0.0
|
384 |
+
- `optim`: adamw_torch
|
385 |
+
- `optim_args`: None
|
386 |
+
- `adafactor`: False
|
387 |
+
- `group_by_length`: False
|
388 |
+
- `length_column_name`: length
|
389 |
+
- `ddp_find_unused_parameters`: None
|
390 |
+
- `ddp_bucket_cap_mb`: None
|
391 |
+
- `ddp_broadcast_buffers`: False
|
392 |
+
- `dataloader_pin_memory`: True
|
393 |
+
- `skip_memory_metrics`: True
|
394 |
+
- `use_legacy_prediction_loop`: False
|
395 |
+
- `push_to_hub`: False
|
396 |
+
- `resume_from_checkpoint`: None
|
397 |
+
- `hub_model_id`: None
|
398 |
+
- `hub_strategy`: every_save
|
399 |
+
- `hub_private_repo`: False
|
400 |
+
- `hub_always_push`: False
|
401 |
+
- `gradient_checkpointing`: False
|
402 |
+
- `gradient_checkpointing_kwargs`: None
|
403 |
+
- `include_inputs_for_metrics`: False
|
404 |
+
- `fp16_backend`: auto
|
405 |
+
- `push_to_hub_model_id`: None
|
406 |
+
- `push_to_hub_organization`: None
|
407 |
+
- `mp_parameters`:
|
408 |
+
- `auto_find_batch_size`: False
|
409 |
+
- `full_determinism`: False
|
410 |
+
- `torchdynamo`: None
|
411 |
+
- `ray_scope`: last
|
412 |
+
- `ddp_timeout`: 1800
|
413 |
+
- `torch_compile`: False
|
414 |
+
- `torch_compile_backend`: None
|
415 |
+
- `torch_compile_mode`: None
|
416 |
+
- `dispatch_batches`: None
|
417 |
+
- `split_batches`: False
|
418 |
+
- `include_tokens_per_second`: False
|
419 |
+
- `neftune_noise_alpha`: None
|
420 |
+
- `batch_sampler`: batch_sampler
|
421 |
+
- `multi_dataset_batch_sampler`: proportional
|
422 |
+
|
423 |
+
</details>
|
424 |
+
|
425 |
+
### Training Logs
|
426 |
+
<details><summary>Click to expand</summary>
|
427 |
+
|
428 |
+
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
|
429 |
+
|:------:|:------:|:-------------:|:------:|:-----------------------:|
|
430 |
+
| 0.0317 | 1000 | 6.3069 | - | - |
|
431 |
+
| 0.0634 | 2000 | 6.1793 | - | - |
|
432 |
+
| 0.0950 | 3000 | 6.1607 | - | - |
|
433 |
+
| 0.1267 | 4000 | 6.1512 | - | - |
|
434 |
+
| 0.1584 | 5000 | 6.1456 | - | - |
|
435 |
+
| 0.1901 | 6000 | 6.1419 | - | - |
|
436 |
+
| 0.2218 | 7000 | 6.1398 | - | - |
|
437 |
+
| 0.2534 | 8000 | 6.1377 | - | - |
|
438 |
+
| 0.2851 | 9000 | 6.1352 | - | - |
|
439 |
+
| 0.3168 | 10000 | 6.1338 | - | - |
|
440 |
+
| 0.3485 | 11000 | 6.1332 | - | - |
|
441 |
+
| 0.3801 | 12000 | 6.1309 | - | - |
|
442 |
+
| 0.4118 | 13000 | 6.1315 | - | - |
|
443 |
+
| 0.4435 | 14000 | 6.1283 | - | - |
|
444 |
+
| 0.4752 | 15000 | 6.129 | - | - |
|
445 |
+
| 0.5069 | 16000 | 6.1271 | - | - |
|
446 |
+
| 0.5385 | 17000 | 6.1265 | - | - |
|
447 |
+
| 0.5702 | 18000 | 6.1238 | - | - |
|
448 |
+
| 0.6019 | 19000 | 6.1234 | - | - |
|
449 |
+
| 0.6336 | 20000 | 6.1225 | - | - |
|
450 |
+
| 0.6653 | 21000 | 6.1216 | - | - |
|
451 |
+
| 0.6969 | 22000 | 6.1196 | - | - |
|
452 |
+
| 0.7286 | 23000 | 6.1198 | - | - |
|
453 |
+
| 0.7603 | 24000 | 6.1178 | - | - |
|
454 |
+
| 0.7920 | 25000 | 6.117 | - | - |
|
455 |
+
| 0.8236 | 26000 | 6.1167 | - | - |
|
456 |
+
| 0.8553 | 27000 | 6.1165 | - | - |
|
457 |
+
| 0.8870 | 28000 | 6.1149 | - | - |
|
458 |
+
| 0.9187 | 29000 | 6.1146 | - | - |
|
459 |
+
| 0.9504 | 30000 | 6.113 | - | - |
|
460 |
+
| 0.9820 | 31000 | 6.1143 | - | - |
|
461 |
+
| 1.0 | 31567 | - | 6.1150 | 0.4829 |
|
462 |
+
| 1.0137 | 32000 | 6.1115 | - | - |
|
463 |
+
| 1.0454 | 33000 | 6.111 | - | - |
|
464 |
+
| 1.0771 | 34000 | 6.1091 | - | - |
|
465 |
+
| 1.1088 | 35000 | 6.1094 | - | - |
|
466 |
+
| 1.1404 | 36000 | 6.1078 | - | - |
|
467 |
+
| 1.1721 | 37000 | 6.1095 | - | - |
|
468 |
+
| 1.2038 | 38000 | 6.106 | - | - |
|
469 |
+
| 1.2355 | 39000 | 6.1071 | - | - |
|
470 |
+
| 1.2671 | 40000 | 6.1073 | - | - |
|
471 |
+
| 1.2988 | 41000 | 6.1064 | - | - |
|
472 |
+
| 1.3305 | 42000 | 6.1047 | - | - |
|
473 |
+
| 1.3622 | 43000 | 6.1054 | - | - |
|
474 |
+
| 1.3939 | 44000 | 6.1048 | - | - |
|
475 |
+
| 1.4255 | 45000 | 6.1053 | - | - |
|
476 |
+
| 1.4572 | 46000 | 6.1058 | - | - |
|
477 |
+
| 1.4889 | 47000 | 6.1037 | - | - |
|
478 |
+
| 1.5206 | 48000 | 6.1041 | - | - |
|
479 |
+
| 1.5523 | 49000 | 6.1023 | - | - |
|
480 |
+
| 1.5839 | 50000 | 6.1018 | - | - |
|
481 |
+
| 1.6156 | 51000 | 6.104 | - | - |
|
482 |
+
| 1.6473 | 52000 | 6.1004 | - | - |
|
483 |
+
| 1.6790 | 53000 | 6.1027 | - | - |
|
484 |
+
| 1.7106 | 54000 | 6.1017 | - | - |
|
485 |
+
| 1.7423 | 55000 | 6.1011 | - | - |
|
486 |
+
| 1.7740 | 56000 | 6.1002 | - | - |
|
487 |
+
| 1.8057 | 57000 | 6.0994 | - | - |
|
488 |
+
| 1.8374 | 58000 | 6.0985 | - | - |
|
489 |
+
| 1.8690 | 59000 | 6.0986 | - | - |
|
490 |
+
| 1.9007 | 60000 | 6.1006 | - | - |
|
491 |
+
| 1.9324 | 61000 | 6.0983 | - | - |
|
492 |
+
| 1.9641 | 62000 | 6.0983 | - | - |
|
493 |
+
| 1.9958 | 63000 | 6.0973 | - | - |
|
494 |
+
| 2.0 | 63134 | - | 6.1193 | 0.4828 |
|
495 |
+
| 2.0274 | 64000 | 6.0943 | - | - |
|
496 |
+
| 2.0591 | 65000 | 6.0941 | - | - |
|
497 |
+
| 2.0908 | 66000 | 6.0936 | - | - |
|
498 |
+
| 2.1225 | 67000 | 6.0909 | - | - |
|
499 |
+
| 2.1541 | 68000 | 6.0925 | - | - |
|
500 |
+
| 2.1858 | 69000 | 6.0932 | - | - |
|
501 |
+
| 2.2175 | 70000 | 6.0939 | - | - |
|
502 |
+
| 2.2492 | 71000 | 6.0919 | - | - |
|
503 |
+
| 2.2809 | 72000 | 6.0932 | - | - |
|
504 |
+
| 2.3125 | 73000 | 6.0916 | - | - |
|
505 |
+
| 2.3442 | 74000 | 6.0919 | - | - |
|
506 |
+
| 2.3759 | 75000 | 6.0919 | - | - |
|
507 |
+
| 2.4076 | 76000 | 6.0911 | - | - |
|
508 |
+
| 2.4393 | 77000 | 6.0924 | - | - |
|
509 |
+
| 2.4709 | 78000 | 6.0911 | - | - |
|
510 |
+
| 2.5026 | 79000 | 6.0922 | - | - |
|
511 |
+
| 2.5343 | 80000 | 6.0926 | - | - |
|
512 |
+
| 2.5660 | 81000 | 6.0911 | - | - |
|
513 |
+
| 2.5976 | 82000 | 6.0897 | - | - |
|
514 |
+
| 2.6293 | 83000 | 6.0922 | - | - |
|
515 |
+
| 2.6610 | 84000 | 6.0908 | - | - |
|
516 |
+
| 2.6927 | 85000 | 6.0884 | - | - |
|
517 |
+
| 2.7244 | 86000 | 6.0907 | - | - |
|
518 |
+
| 2.7560 | 87000 | 6.0904 | - | - |
|
519 |
+
| 2.7877 | 88000 | 6.0881 | - | - |
|
520 |
+
| 2.8194 | 89000 | 6.0902 | - | - |
|
521 |
+
| 2.8511 | 90000 | 6.088 | - | - |
|
522 |
+
| 2.8828 | 91000 | 6.0888 | - | - |
|
523 |
+
| 2.9144 | 92000 | 6.0884 | - | - |
|
524 |
+
| 2.9461 | 93000 | 6.0881 | - | - |
|
525 |
+
| 2.9778 | 94000 | 6.0896 | - | - |
|
526 |
+
| 3.0 | 94701 | - | 6.1225 | 0.4788 |
|
527 |
+
| 3.0095 | 95000 | 6.0857 | - | - |
|
528 |
+
| 3.0412 | 96000 | 6.0838 | - | - |
|
529 |
+
| 3.0728 | 97000 | 6.0843 | - | - |
|
530 |
+
| 3.1045 | 98000 | 6.0865 | - | - |
|
531 |
+
| 3.1362 | 99000 | 6.0827 | - | - |
|
532 |
+
| 3.1679 | 100000 | 6.0836 | - | - |
|
533 |
+
| 3.1995 | 101000 | 6.0837 | - | - |
|
534 |
+
| 3.2312 | 102000 | 6.0836 | - | - |
|
535 |
+
| 3.2629 | 103000 | 6.0837 | - | - |
|
536 |
+
| 3.2946 | 104000 | 6.084 | - | - |
|
537 |
+
| 3.3263 | 105000 | 6.0836 | - | - |
|
538 |
+
| 3.3579 | 106000 | 6.0808 | - | - |
|
539 |
+
| 3.3896 | 107000 | 6.0821 | - | - |
|
540 |
+
| 3.4213 | 108000 | 6.0817 | - | - |
|
541 |
+
| 3.4530 | 109000 | 6.082 | - | - |
|
542 |
+
| 3.4847 | 110000 | 6.083 | - | - |
|
543 |
+
| 3.5163 | 111000 | 6.0829 | - | - |
|
544 |
+
| 3.5480 | 112000 | 6.0832 | - | - |
|
545 |
+
| 3.5797 | 113000 | 6.0829 | - | - |
|
546 |
+
| 3.6114 | 114000 | 6.0837 | - | - |
|
547 |
+
| 3.6430 | 115000 | 6.082 | - | - |
|
548 |
+
| 3.6747 | 116000 | 6.0823 | - | - |
|
549 |
+
| 3.7064 | 117000 | 6.082 | - | - |
|
550 |
+
| 3.7381 | 118000 | 6.0833 | - | - |
|
551 |
+
| 3.7698 | 119000 | 6.0831 | - | - |
|
552 |
+
| 3.8014 | 120000 | 6.0814 | - | - |
|
553 |
+
| 3.8331 | 121000 | 6.0813 | - | - |
|
554 |
+
| 3.8648 | 122000 | 6.0797 | - | - |
|
555 |
+
| 3.8965 | 123000 | 6.0793 | - | - |
|
556 |
+
| 3.9282 | 124000 | 6.0818 | - | - |
|
557 |
+
| 3.9598 | 125000 | 6.0806 | - | - |
|
558 |
+
| 3.9915 | 126000 | 6.08 | - | - |
|
559 |
+
| 4.0 | 126268 | - | 6.1266 | 0.4671 |
|
560 |
+
|
561 |
+
</details>
|
562 |
+
|
563 |
+
### Framework Versions
|
564 |
+
- Python: 3.10.6
|
565 |
+
- Sentence Transformers: 3.0.0
|
566 |
+
- Transformers: 4.35.0
|
567 |
+
- PyTorch: 2.1.0a0+4136153
|
568 |
+
- Accelerate: 0.30.1
|
569 |
+
- Datasets: 2.14.1
|
570 |
+
- Tokenizers: 0.14.1
|
571 |
+
|
572 |
+
## Citation
|
573 |
+
|
574 |
+
### BibTeX
|
575 |
+
|
576 |
+
#### Sentence Transformers
|
577 |
+
```bibtex
|
578 |
+
@inproceedings{reimers-2019-sentence-bert,
|
579 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
580 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
581 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
582 |
+
month = "11",
|
583 |
+
year = "2019",
|
584 |
+
publisher = "Association for Computational Linguistics",
|
585 |
+
url = "https://arxiv.org/abs/1908.10084",
|
586 |
+
}
|
587 |
+
```
|
588 |
+
|
589 |
+
#### CoSENTLoss
|
590 |
+
```bibtex
|
591 |
+
@online{kexuefm-8847,
|
592 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
593 |
+
author={Su Jianlin},
|
594 |
+
year={2022},
|
595 |
+
month={Jan},
|
596 |
+
url={https://kexue.fm/archives/8847},
|
597 |
+
}
|
598 |
+
```
|
599 |
+
|
600 |
+
<!--
|
601 |
+
## Glossary
|
602 |
+
|
603 |
+
*Clearly define terms in order to be accessible across audiences.*
|
604 |
+
-->
|
605 |
+
|
606 |
+
<!--
|
607 |
+
## Model Card Authors
|
608 |
+
|
609 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
610 |
+
-->
|
611 |
+
|
612 |
+
<!--
|
613 |
+
## Model Card Contact
|
614 |
+
|
615 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
616 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./encoder/training_stsbenchmark_3e5_4epochdistilbert-base-uncased-2024-07-03_01-28-04/final",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.35.0",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.35.0",
|
5 |
+
"pytorch": "2.1.0a0+4136153"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da9d50f2d6244bb0153ecf16b9c34ac259783173fb15a9aa1522ba1fc8a8e59e
|
3 |
+
size 265462608
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "DistilBertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|