File size: 2,928 Bytes
6b7b4f2
 
 
 
 
 
 
 
 
 
 
330f5d4
 
6b7b4f2
 
10490e8
6b7b4f2
 
 
 
330f5d4
6b7b4f2
 
 
330f5d4
 
 
 
 
6b7b4f2
330f5d4
 
 
 
 
 
 
 
6b7b4f2
 
 
 
 
 
 
 
 
 
 
 
 
10490e8
6b7b4f2
 
 
 
 
 
 
 
330f5d4
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: bart-large-finetuned-filtered-spotify-podcast-summ
  results: []
---

# bart-large-finetuned-filtered-spotify-podcast-summ

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on on the [Spotify Podcast Dataset](https://arxiv.org/abs/2004.04270). Take a look to the [github repository](https://github.com/TheOnesThatWereAbroad/PodcastSummarization) of this project.

It achieves the following results on the evaluation set:
- Train Loss: 2.2967
- Validation Loss: 2.8316
- Epoch: 2

## Intended uses & limitations

This model is intended to be used for automatic podcast summarisation. Given the podcast transcript in input, the objective is to provide a short text summary that a user might read when deciding whether to listen to a podcast. The summary should accurately convey the content of the podcast, be human-readable, and be short enough to be quickly read on a smartphone screen. 

## Training and evaluation data

We split the filtered brass set into train/dev sets of 69,336/7,705 episodes. 
The test set consists of 1,027 episodes. Only 1025 have been used because two of them did not contain an episode description.


## How to use

The model can be used for the summarization as follows:

```python
from transformers import pipeline
summarizer = pipeline("summarization", model="gmurro/bart-large-finetuned-filtered-spotify-podcast-summ", tokenizer="gmurro/bart-large-finetuned-filtered-spotify-podcast-summ")
summary = summarizer(podcast_transcript, min_length=39, max_length=250)
print(summary[0]['summary_text'])
```

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.0440     | 2.8733          | 0     |
| 2.6085     | 2.8549          | 1     |
| 2.2967     | 2.8316          | 2     |


### Framework versions

- Transformers 4.19.4
- TensorFlow 2.9.1
- Datasets 2.3.1
- Tokenizers 0.12.1


## Authors

|   Name    |  Surname  |                 Email                  |                       Username                        |
| :-------: | :-------: | :------------------------------------: | :---------------------------------------------------: |
| Giuseppe  |   Boezio  | `giuseppe.boezio@studio.unibo.it`      | [_giuseppeboezio_](https://github.com/giuseppeboezio) |
| Simone    |  Montali  |    `simone.montali@studio.unibo.it`    |         [_montali_](https://github.com/montali)         |
| Giuseppe  |    Murro  |    `giuseppe.murro@studio.unibo.it`    |         [_gmurro_](https://github.com/gmurro)         |