gngpostalsrvc commited on
Commit
82ff154
·
1 Parent(s): f57925a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # COHeN
6
+
7
+ This model is a fine-tuned version of [BERiT](https://huggingface.co/gngpostalsrvc/BERiT) on the [COHeN dataset](https://huggingface.co/datasets/gngpostalsrvc/COHeN). It achieves the following results on the evaluation set:
8
+ - Loss: 0.4418
9
+ - Accuracy: 0.8622
10
+
11
+ ## Model Description
12
+
13
+ COHeN (Classification of Old Hebrew via Neural Net) is a text classification model for Biblical Hebrew that assigns Hebrew texts to one of four chronological phases: Archaic Biblical Hebrew (ABH), Classical Biblical Hebrew (CBH), Transitional Biblical Hebrew (TBH), or Late Biblical Hebrew (LBH). It allows scholars to check their intuition regarding the dating of particular verses.
14
+
15
+ ## How to Use
16
+
17
+ ```
18
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
19
+
20
+ model_name = 'gngpostalsrvc/COHeN'
21
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
22
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
23
+ ```
24
+
25
+ ## Training Procedure
26
+
27
+ COHeN was trained on the COHeN dataset for 20 epochs using a Tesla T4 GPU. Further training did not yield significant improvements in performance.
28
+
29
+ ### Training hyperparameters
30
+
31
+ The following hyperparameters were used during training:
32
+ - learning_rate: 0.0027
33
+ - weight_decay: 0.0049
34
+ - train_batch_size: 32
35
+ - eval_batch_size: 32
36
+ - seed: 42
37
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
38
+ - lr_scheduler_type: linear
39
+ - num_epochs: 20
40
+
41
+ ### Framework versions
42
+
43
+ - Transformers 4.24.7
44
+ - Pytorch 1.12.1+cu113
45
+ - Datasets 2.11.0
46
+ - Tokenizers 0.13.3
47
+