Commit
·
e5785b9
1
Parent(s):
96cb836
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: w2v2
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# w2v2
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.8860
|
18 |
+
- Wer: 0.2817
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1000
|
44 |
+
- num_epochs: 30
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| 5.5664 | 3.07 | 500 | 3.0411 | 0.9997 |
|
52 |
+
| 2.5607 | 6.13 | 1000 | 1.0770 | 0.3660 |
|
53 |
+
| 0.9959 | 9.2 | 1500 | 0.8815 | 0.3017 |
|
54 |
+
| 0.8129 | 12.27 | 2000 | 0.8676 | 0.2915 |
|
55 |
+
| 0.7334 | 15.34 | 2500 | 0.8381 | 0.2931 |
|
56 |
+
| 0.669 | 18.4 | 3000 | 0.8802 | 0.2864 |
|
57 |
+
| 0.6312 | 21.47 | 3500 | 0.8679 | 0.2864 |
|
58 |
+
| 0.6094 | 24.54 | 4000 | 0.8811 | 0.2802 |
|
59 |
+
| 0.5987 | 27.61 | 4500 | 0.8860 | 0.2817 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.17.0
|
65 |
+
- Pytorch 1.12.1+cu113
|
66 |
+
- Datasets 1.18.3
|
67 |
+
- Tokenizers 0.12.1
|