File size: 26,092 Bytes
5eed1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
<div align="center">
  <img src="resources/mmdet3d-logo.png" width="600"/>
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab 官网</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab 开放平台</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/zh_CN/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)

[📘使用文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/) |
[🛠️安装教程](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html) |
[👀模型库](https://mmdetection3d.readthedocs.io/zh_CN/latest/model_zoo.html) |
[🆕更新日志](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀进行中的项目](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔报告问题](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)

</div>

<div align="center">

[English](README.md) | 简体中文

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>

## 简介

MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 [OpenMMlab](https://openmmlab.com/) 项目的一部分。

主分支代码目前支持 PyTorch 1.8 以上的版本。

![demo image](resources/mmdet3d_outdoor_demo.gif)

<details open>
<summary>主要特性</summary>

- **支持多模态/单模态的检测器**

  支持多模态/单模态检测器,包括 MVXNet,VoteNet,PointPillars 等。

- **支持户内/户外的数据集**

  支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)。

- **与 2D 检测器的自然整合**

  [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的 **300+ 个模型,40+ 的论文算法**,和相关模块都可以在此代码库中训练或使用。

- **性能高**

  训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/zh_cn/notes/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `✗`。

  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |

</details>

和 [MMDetection](https://github.com/open-mmlab/mmdetection),[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。

## 最新进展

### 亮点

在1.4版本中,MMDetecion3D 重构了 Waymo 数据集, 加速了 Waymo 数据集的预处理、训练/测试启动、验证的速度。并且在 Waymo 上拓展了对 单目/BEV 等基于相机的三维目标检测模型的支持。在[这里](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)提供了对 Waymo 数据信息的详细解读。

此外,在1.4版本中,MMDetection3D 提供了 [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) 来帮助社区用户上手 Waymo 并用于快速迭代开发。

**v1.4.0** 版本已经在 2024.1.8 发布:

-`projects` 中支持了 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的训练
-`projects` 中支持了 [Nerf-Det](https://arxiv.org/abs/2307.14620)
- 重构了 Waymo 数据集

**v1.3.0** 版本已经在 2023.10.18 发布:

-`projects` 中支持 [CENet](https://arxiv.org/abs/2207.12691)
- 使用新的 3D inferencers 增强演示代码效果

**v1.2.0** 版本已经在 2023.7.4 发布:

-`mmdet3d/configs`中支持 [新Config样式](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta)
-`projects` 中支持 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的推理
- 支持通过 `mim` 从 [OpenDataLab](https://opendatalab.com/) 下载数据集

**v1.1.1** 版本已经在 2023.5.30 发布:

-`projects` 中支持 [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf)
-`projects` 中支持 BEVFusion 的训练
- 支持基于激光雷达的 3D 语义分割基准

## 安装

请参考[快速入门文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html)进行安装。

## 教程

<details>
<summary>用户指南</summary>

- [训练 & 测试](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#train-test)
  - [学习配置文件](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/config.html)
  - [坐标系](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/coord_sys_tutorial.html)
  - [数据预处理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/dataset_prepare.html)
  - [自定义数据预处理流程](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/data_pipeline.html)
  - [在标注数据集上测试和训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/train_test.html)
  - [推理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/inference.html)
  - [在自定义数据集上进行训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/new_data_model.html)
- [实用工具](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#useful-tools)

</details>

<details>
<summary>进阶教程</summary>

- [数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#datasets)
  - [KITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/kitti.html)
  - [NuScenes 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.html)
  - [Lyft 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/lyft.html)
  - [Waymo 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/waymo.html)
  - [SUN RGB-D 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/sunrgbd.html)
  - [ScanNet 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/scannet.html)
  - [S3DIS 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/s3dis.html)
  - [SemanticKITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/semantickitti.html)
- [支持的任务](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#supported-tasks)
  - [基于激光雷达的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_det3d.html)
  - [基于视觉的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/vision_det3d.html)
  - [基于激光雷达的 3D 语义分割](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [自定义项目](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#customization)
  - [自定义数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_dataset.html)
  - [自定义模型](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_models.html)
  - [自定义运行时配置](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_runtime.html)

</details>

## 基准测试和模型库

测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。

<div align="center">
  <b>模块组件</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>主干网络</b>
      </td>
      <td>
        <b>检测头</b>
      </td>
      <td>
        <b>特性</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
        <li>MinkResNet (CVPR'2019)</li>
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>算法模型</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>激光雷达 3D 目标检测</b>
      </td>
      <td>
        <b>相机 3D 目标检测</b>
      </td>
      <td>
        <b>多模态 3D 目标检测</b>
      </td>
      <td>
        <b>3D 语义分割</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>室外</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
            <li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li>
        </ul>
        <li><b>室内</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
            <li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li>
      </ul>
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
          <li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li>
          <li><a href="projects/PETR">PETR (ECCV'2022)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
          <li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li>
        </ul>
        <li><b>室内</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
        <li><b>室外</b></li>
        <ul>
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
          <li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li>
        </ul>
        <li><b>室内</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

|               | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |   ✗    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|    SPVCNN     |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
|   BEVFusion   |   ✗    |   ✗    |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| CenterFormer  |   ✗    |   ✗    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     TR3D      |   ✗    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    DETR3D     |   ✓    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     PETR      |   ✗    |   ✓    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   TPVFormer   |   ✓    |   ✗    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |

**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。

## 常见问题

请参考 [FAQ](docs/zh_cn/notes/faq.md) 了解其他用户的常见问题。

## 贡献指南

我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](docs/en/notes/contribution_guides.md)来了解参与项目贡献的相关指引。

## 致谢

MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型。

## 引用

如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D:

```latex
@misc{mmdet3d2020,
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

## 开源许可证

该项目采用 [Apache 2.0 开源许可证](LICENSE)。

## OpenMMLab 的其他项目

- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架

## 欢迎加入 OpenMMLab 社区

扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),扫描下方微信二维码添加喵喵好友,进入 MMDetection3D 微信交流社群。【加好友申请格式:研究方向+地区+学校/公司+姓名】

<div align="center">
<img src="https://user-images.githubusercontent.com/58739961/187154320-f3312cdf-31f2-4316-9dbb-8d7b0e1b7e08.jpg" height="400" />  <img src="https://github.com/open-mmlab/mmdetection3d/assets/62195058/dfb3f6a9-25c6-47a5-936b-3f1d7347a42b" height="400" />
</div>

我们会在 OpenMMLab 社区为大家

- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台

干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬