File size: 4,172 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import torch
import torch.nn as nn
from PIL import Image


class Grid(object):

    def __init__(self,
                 use_h,
                 use_w,
                 rotate=1,
                 offset=False,
                 ratio=0.5,
                 mode=0,
                 prob=1.):
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.st_prob = prob
        self.prob = prob

    def set_prob(self, epoch, max_epoch):
        self.prob = self.st_prob * epoch / max_epoch

    def __call__(self, img, label):
        if np.random.rand() > self.prob:
            return img, label
        h = img.size(1)
        w = img.size(2)
        self.d1 = 2
        self.d2 = min(h, w)
        hh = int(1.5 * h)
        ww = int(1.5 * w)
        d = np.random.randint(self.d1, self.d2)
        if self.ratio == 1:
            self.L = np.random.randint(1, d)
        else:
            self.L = min(max(int(d * self.ratio + 0.5), 1), d - 1)
        mask = np.ones((hh, ww), np.float32)
        st_h = np.random.randint(d)
        st_w = np.random.randint(d)
        if self.use_h:
            for i in range(hh // d):
                s = d * i + st_h
                t = min(s + self.L, hh)
                mask[s:t, :] *= 0
        if self.use_w:
            for i in range(ww // d):
                s = d * i + st_w
                t = min(s + self.L, ww)
                mask[:, s:t] *= 0

        r = np.random.randint(self.rotate)
        mask = Image.fromarray(np.uint8(mask))
        mask = mask.rotate(r)
        mask = np.asarray(mask)
        mask = mask[(hh - h) // 2:(hh - h) // 2 + h,
                    (ww - w) // 2:(ww - w) // 2 + w]

        mask = torch.from_numpy(mask).float()
        if self.mode == 1:
            mask = 1 - mask

        mask = mask.expand_as(img)
        if self.offset:
            offset = torch.from_numpy(2 * (np.random.rand(h, w) - 0.5)).float()
            offset = (1 - mask) * offset
            img = img * mask + offset
        else:
            img = img * mask

        return img, label


class GridMask(nn.Module):

    def __init__(self,
                 use_h,
                 use_w,
                 rotate=1,
                 offset=False,
                 ratio=0.5,
                 mode=0,
                 prob=1.):
        super(GridMask, self).__init__()
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.st_prob = prob
        self.prob = prob

    def set_prob(self, epoch, max_epoch):
        self.prob = self.st_prob * epoch / max_epoch  # + 1.# 0.5

    def forward(self, x):
        if np.random.rand() > self.prob or not self.training:
            return x
        n, c, h, w = x.size()
        x = x.view(-1, h, w)
        hh = int(1.5 * h)
        ww = int(1.5 * w)
        d = np.random.randint(2, h)
        self.L = min(max(int(d * self.ratio + 0.5), 1), d - 1)
        mask = np.ones((hh, ww), np.float32)
        st_h = np.random.randint(d)
        st_w = np.random.randint(d)
        if self.use_h:
            for i in range(hh // d):
                s = d * i + st_h
                t = min(s + self.L, hh)
                mask[s:t, :] *= 0
        if self.use_w:
            for i in range(ww // d):
                s = d * i + st_w
                t = min(s + self.L, ww)
                mask[:, s:t] *= 0

        r = np.random.randint(self.rotate)
        mask = Image.fromarray(np.uint8(mask))
        mask = mask.rotate(r)
        mask = np.asarray(mask)
        mask = mask[(hh - h) // 2:(hh - h) // 2 + h,
                    (ww - w) // 2:(ww - w) // 2 + w]

        mask = torch.from_numpy(mask).to(x)
        if self.mode == 1:
            mask = 1 - mask
        mask = mask.expand_as(x)
        if self.offset:
            offset = torch.from_numpy(2 * (np.random.rand(h, w) - 0.5)).to(x)
            x = x * mask + offset * (1 - mask)
        else:
            x = x * mask

        return x.view(n, c, h, w)