File size: 5,654 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
_base_ = ['../../../configs/_base_/default_runtime.py']

custom_imports = dict(imports=['projects.NeRF-Det.nerfdet'])
prior_generator = dict(
    type='AlignedAnchor3DRangeGenerator',
    ranges=[[-3.2, -3.2, -1.28, 3.2, 3.2, 1.28]],
    rotations=[.0])

model = dict(
    type='NerfDet',
    data_preprocessor=dict(
        type='NeRFDetDataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=10),
    backbone=dict(
        type='mmdet.ResNet',
        depth=101,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=False),
        norm_eval=True,
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
        style='pytorch'),
    neck=dict(
        type='mmdet.FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=4),
    neck_3d=dict(
        type='IndoorImVoxelNeck',
        in_channels=256,
        out_channels=128,
        n_blocks=[1, 1, 1]),
    bbox_head=dict(
        type='NerfDetHead',
        bbox_loss=dict(type='AxisAlignedIoULoss', loss_weight=1.0),
        n_classes=18,
        n_levels=3,
        n_channels=128,
        n_reg_outs=6,
        pts_assign_threshold=27,
        pts_center_threshold=18,
        prior_generator=prior_generator),
    prior_generator=prior_generator,
    voxel_size=[.16, .16, .2],
    n_voxels=[40, 40, 16],
    aabb=([-2.7, -2.7, -0.78], [3.7, 3.7, 1.78]),
    near_far_range=[0.2, 8.0],
    N_samples=64,
    N_rand=2048,
    nerf_mode='image',
    depth_supervise=True,
    use_nerf_mask=True,
    nerf_sample_view=20,
    squeeze_scale=4,
    nerf_density=True,
    train_cfg=dict(),
    test_cfg=dict(nms_pre=1000, iou_thr=.25, score_thr=.01))

dataset_type = 'MultiViewScanNetDataset'
data_root = 'data/scannet/'
class_names = [
    'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf',
    'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain',
    'toilet', 'sink', 'bathtub', 'garbagebin'
]
metainfo = dict(CLASSES=class_names)
file_client_args = dict(backend='disk')

input_modality = dict(
    use_camera=True,
    use_depth=True,
    use_lidar=False,
    use_neuralrecon_depth=False,
    use_ray=True)
backend_args = None

train_collect_keys = [
    'img', 'gt_bboxes_3d', 'gt_labels_3d', 'depth', 'lightpos', 'nerf_sizes',
    'raydirs', 'gt_images', 'gt_depths', 'denorm_images'
]

test_collect_keys = [
    'img',
    'depth',
    'lightpos',
    'nerf_sizes',
    'raydirs',
    'gt_images',
    'gt_depths',
    'denorm_images',
]

train_pipeline = [
    dict(type='LoadAnnotations3D'),
    dict(
        type='MultiViewPipeline',
        n_images=48,
        transforms=[
            dict(type='LoadImageFromFile', file_client_args=file_client_args),
            dict(type='Resize', scale=(320, 240), keep_ratio=True),
        ],
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        margin=10,
        depth_range=[0.5, 5.5],
        loading='random',
        nerf_target_views=10),
    dict(type='RandomShiftOrigin', std=(.7, .7, .0)),
    dict(type='PackNeRFDetInputs', keys=train_collect_keys)
]

test_pipeline = [
    dict(type='LoadAnnotations3D'),
    dict(
        type='MultiViewPipeline',
        n_images=101,
        transforms=[
            dict(type='LoadImageFromFile', file_client_args=file_client_args),
            dict(type='Resize', scale=(320, 240), keep_ratio=True),
        ],
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        margin=10,
        depth_range=[0.5, 5.5],
        loading='random',
        nerf_target_views=1),
    dict(type='PackNeRFDetInputs', keys=test_collect_keys)
]

train_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='RepeatDataset',
        times=6,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='scannet_infos_train_new.pkl',
            pipeline=train_pipeline,
            modality=input_modality,
            test_mode=False,
            filter_empty_gt=True,
            box_type_3d='Depth',
            metainfo=metainfo)))
val_dataloader = dict(
    batch_size=1,
    num_workers=5,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='scannet_infos_val_new.pkl',
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        filter_empty_gt=True,
        box_type_3d='Depth',
        metainfo=metainfo))
test_dataloader = val_dataloader

val_evaluator = dict(type='IndoorMetric')
test_evaluator = val_evaluator

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
test_cfg = dict()
val_cfg = dict()

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.0001),
    paramwise_cfg=dict(
        custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}),
    clip_grad=dict(max_norm=35., norm_type=2))
param_scheduler = [
    dict(
        type='MultiStepLR',
        begin=0,
        end=12,
        by_epoch=True,
        milestones=[8, 11],
        gamma=0.1)
]

# hooks
default_hooks = dict(
    checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=12))

# runtime
find_unused_parameters = True  # only 1 of 4 FPN outputs is used