File size: 14,974 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright (c) OpenMMLab. All rights reserved.
# Attention: This file is mainly modified based on the file with the same
# name in the original project. For more details, please refer to the
# origin project.
from collections import OrderedDict

import numpy as np
import torch
import torch.nn.functional as F

rng = np.random.RandomState(234)


# helper functions for nerf ray rendering
def volume_sampling(sample_pts, features, aabb):
    B, C, D, W, H = features.shape
    assert B == 1
    aabb = torch.Tensor(aabb).to(sample_pts.device)
    N_rays, N_samples, coords = sample_pts.shape
    sample_pts = sample_pts.view(1, N_rays * N_samples, 1, 1,
                                 3).repeat(B, 1, 1, 1, 1)
    aabbSize = aabb[1] - aabb[0]
    invgridSize = 1.0 / aabbSize * 2
    norm_pts = (sample_pts - aabb[0]) * invgridSize - 1
    sample_features = F.grid_sample(
        features, norm_pts, align_corners=True, padding_mode='border')
    masks = ((norm_pts < 1) & (norm_pts > -1)).float().sum(dim=-1)
    masks = (masks.view(N_rays, N_samples) == 3)
    return sample_features.view(C, N_rays,
                                N_samples).permute(1, 2, 0).contiguous(), masks


def _compute_projection(img_meta):
    views = len(img_meta['lidar2img']['extrinsic'])
    intrinsic = torch.tensor(img_meta['lidar2img']['intrinsic'][:4, :4])
    ratio = img_meta['ori_shape'][0] / img_meta['img_shape'][0]
    intrinsic[:2] /= ratio
    intrinsic = intrinsic.unsqueeze(0).view(1, 16).repeat(views, 1)
    img_size = torch.Tensor(img_meta['img_shape'][:2]).to(intrinsic.device)
    img_size = img_size.unsqueeze(0).repeat(views, 1)
    extrinsics = []
    for v in range(views):
        extrinsics.append(
            torch.Tensor(img_meta['lidar2img']['extrinsic'][v]).to(
                intrinsic.device))
    extrinsic = torch.stack(extrinsics).view(views, 16)
    train_cameras = torch.cat([img_size, intrinsic, extrinsic], dim=-1)
    return train_cameras.unsqueeze(0)


def compute_mask_points(feature, mask):
    weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)
    mean = torch.sum(feature * weight, dim=2, keepdim=True)
    var = torch.sum((feature - mean)**2, dim=2, keepdim=True)
    var = var / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)
    var = torch.exp(-var)
    return mean, var


def sample_pdf(bins, weights, N_samples, det=False):
    """Helper function used for sampling.

    Args:
        bins (tensor):Tensor of shape [N_rays, M+1], M is the number of bins
        weights (tensor):Tensor of shape [N_rays, M+1], M is the number of bins
        N_samples (int):Number of samples along each ray
        det (bool):If True, will perform deterministic sampling

    Returns:
        samples (tuple): [N_rays, N_samples]
    """

    M = weights.shape[1]
    weights += 1e-5
    # Get pdf
    pdf = weights / torch.sum(weights, dim=-1, keepdim=True)
    cdf = torch.cumsum(pdf, dim=-1)
    cdf = torch.cat([torch.zeros_like(cdf[:, 0:1]), cdf], dim=-1)

    # Take uniform samples
    if det:
        u = torch.linspace(0., 1., N_samples, device=bins.device)
        u = u.unsqueeze(0).repeat(bins.shape[0], 1)
    else:
        u = torch.rand(bins.shape[0], N_samples, device=bins.device)

    # Invert CDF
    above_inds = torch.zeros_like(u, dtype=torch.long)
    for i in range(M):
        above_inds += (u >= cdf[:, i:i + 1]).long()

    # random sample inside each bin
    below_inds = torch.clamp(above_inds - 1, min=0)
    inds_g = torch.stack((below_inds, above_inds), dim=2)

    cdf = cdf.unsqueeze(1).repeat(1, N_samples, 1)
    cdf_g = torch.gather(input=cdf, dim=-1, index=inds_g)

    bins = bins.unsqueeze(1).repeat(1, N_samples, 1)
    bins_g = torch.gather(input=bins, dim=-1, index=inds_g)

    denom = cdf_g[:, :, 1] - cdf_g[:, :, 0]
    denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
    t = (u - cdf_g[:, :, 0]) / denom

    samples = bins_g[:, :, 0] + t * (bins_g[:, :, 1] - bins_g[:, :, 0])

    return samples


def sample_along_camera_ray(ray_o,
                            ray_d,
                            depth_range,
                            N_samples,
                            inv_uniform=False,
                            det=False):
    """Sampling along the camera ray.

    Args:
        ray_o (tensor): Origin of the ray in scene coordinate system;
            tensor of shape [N_rays, 3]
        ray_d (tensor): Homogeneous ray direction vectors in
            scene coordinate system; tensor of shape [N_rays, 3]
        depth_range (tuple): [near_depth, far_depth]
        inv_uniform (bool): If True,uniformly sampling inverse depth.
        det (bool): If True, will perform deterministic sampling.
    Returns:
        pts (tensor): Tensor of shape [N_rays, N_samples, 3]
        z_vals (tensor): Tensor of shape [N_rays, N_samples]
    """
    # will sample inside [near_depth, far_depth]
    # assume the nearest possible depth is at least (min_ratio * depth)
    near_depth_value = depth_range[0]
    far_depth_value = depth_range[1]
    assert near_depth_value > 0 and far_depth_value > 0 \
        and far_depth_value > near_depth_value

    near_depth = near_depth_value * torch.ones_like(ray_d[..., 0])

    far_depth = far_depth_value * torch.ones_like(ray_d[..., 0])

    if inv_uniform:
        start = 1. / near_depth
        step = (1. / far_depth - start) / (N_samples - 1)
        inv_z_vals = torch.stack([start + i * step for i in range(N_samples)],
                                 dim=1)
        z_vals = 1. / inv_z_vals
    else:
        start = near_depth
        step = (far_depth - near_depth) / (N_samples - 1)
        z_vals = torch.stack([start + i * step for i in range(N_samples)],
                             dim=1)

    if not det:
        # get intervals between samples
        mids = .5 * (z_vals[:, 1:] + z_vals[:, :-1])
        upper = torch.cat([mids, z_vals[:, -1:]], dim=-1)
        lower = torch.cat([z_vals[:, 0:1], mids], dim=-1)
        # uniform samples in those intervals
        t_rand = torch.rand_like(z_vals)
        z_vals = lower + (upper - lower) * t_rand

    ray_d = ray_d.unsqueeze(1).repeat(1, N_samples, 1)
    ray_o = ray_o.unsqueeze(1).repeat(1, N_samples, 1)
    pts = z_vals.unsqueeze(2) * ray_d + ray_o  # [N_rays, N_samples, 3]
    return pts, z_vals


# ray rendering of nerf
def raw2outputs(raw, z_vals, mask, white_bkgd=False):
    """Transform raw data to outputs:

    Args:
        raw(tensor):Raw network output.Tensor of shape [N_rays, N_samples, 4]
        z_vals(tensor):Depth of point samples along rays.
            Tensor of shape [N_rays, N_samples]
        ray_d(tensor):[N_rays, 3]

    Returns:
        ret(dict):
            -rgb(tensor):[N_rays, 3]
            -depth(tensor):[N_rays,]
            -weights(tensor):[N_rays,]
            -depth_std(tensor):[N_rays,]
    """
    rgb = raw[:, :, :3]  # [N_rays, N_samples, 3]
    sigma = raw[:, :, 3]  # [N_rays, N_samples]

    # note: we did not use the intervals here,
    # because in practice different scenes from COLMAP can have
    # very different scales, and using interval can affect
    # the model's generalization ability.
    # Therefore we don't use the intervals for both training and evaluation.
    sigma2alpha = lambda sigma, dists: 1. - torch.exp(-sigma)  # noqa

    # point samples are ordered with increasing depth
    # interval between samples
    dists = z_vals[:, 1:] - z_vals[:, :-1]
    dists = torch.cat((dists, dists[:, -1:]), dim=-1)

    alpha = sigma2alpha(sigma, dists)

    T = torch.cumprod(1. - alpha + 1e-10, dim=-1)[:, :-1]
    T = torch.cat((torch.ones_like(T[:, 0:1]), T), dim=-1)

    # maths show weights, and summation of weights along a ray,
    # are always inside [0, 1]
    weights = alpha * T
    rgb_map = torch.sum(weights.unsqueeze(2) * rgb, dim=1)

    if white_bkgd:
        rgb_map = rgb_map + (1. - torch.sum(weights, dim=-1, keepdim=True))

    if mask is not None:
        mask = mask.float().sum(dim=1) > 8

    depth_map = torch.sum(
        weights * z_vals, dim=-1) / (
            torch.sum(weights, dim=-1) + 1e-8)
    depth_map = torch.clamp(depth_map, z_vals.min(), z_vals.max())

    ret = OrderedDict([('rgb', rgb_map), ('depth', depth_map),
                       ('weights', weights), ('mask', mask), ('alpha', alpha),
                       ('z_vals', z_vals), ('transparency', T)])

    return ret


def render_rays_func(
        ray_o,
        ray_d,
        mean_volume,
        cov_volume,
        features_2D,
        img,
        aabb,
        near_far_range,
        N_samples,
        N_rand=4096,
        nerf_mlp=None,
        img_meta=None,
        projector=None,
        mode='volume',  # volume and image
        nerf_sample_view=3,
        inv_uniform=False,
        N_importance=0,
        det=False,
        is_train=True,
        white_bkgd=False,
        gt_rgb=None,
        gt_depth=None):

    ret = {
        'outputs_coarse': None,
        'outputs_fine': None,
        'gt_rgb': gt_rgb,
        'gt_depth': gt_depth
    }

    # pts: [N_rays, N_samples, 3]
    # z_vals: [N_rays, N_samples]
    pts, z_vals = sample_along_camera_ray(
        ray_o=ray_o,
        ray_d=ray_d,
        depth_range=near_far_range,
        N_samples=N_samples,
        inv_uniform=inv_uniform,
        det=det)
    N_rays, N_samples = pts.shape[:2]

    if mode == 'image':
        img = img.permute(0, 2, 3, 1).unsqueeze(0)
        train_camera = _compute_projection(img_meta).to(img.device)
        rgb_feat, mask = projector.compute(
            pts, img, train_camera, features_2D, grid_sample=True)
        pixel_mask = mask[..., 0].sum(dim=2) > 1
        mean, var = compute_mask_points(rgb_feat, mask)
        globalfeat = torch.cat([mean, var], dim=-1).squeeze(2)
        rgb_pts, density_pts = nerf_mlp(pts, ray_d, globalfeat)
        raw_coarse = torch.cat([rgb_pts, density_pts], dim=-1)
        ret['sigma'] = density_pts

    elif mode == 'volume':
        mean_pts, inbound_masks = volume_sampling(pts, mean_volume, aabb)
        cov_pts, inbound_masks = volume_sampling(pts, cov_volume, aabb)
        # This masks is for indicating which points outside of aabb
        img = img.permute(0, 2, 3, 1).unsqueeze(0)
        train_camera = _compute_projection(img_meta).to(img.device)
        _, view_mask = projector.compute(pts, img, train_camera, None)
        pixel_mask = view_mask[..., 0].sum(dim=2) > 1
        # plot_3D_vis(pts, aabb, img, train_camera)
        # [N_rays, N_samples], should at least have 2 observations
        # This mask is for indicating which points do not have projected point
        globalpts = torch.cat([mean_pts, cov_pts], dim=-1)
        rgb_pts, density_pts = nerf_mlp(pts, ray_d, globalpts)
        density_pts = density_pts * inbound_masks.unsqueeze(dim=-1)

        raw_coarse = torch.cat([rgb_pts, density_pts], dim=-1)

    outputs_coarse = raw2outputs(
        raw_coarse, z_vals, pixel_mask, white_bkgd=white_bkgd)
    ret['outputs_coarse'] = outputs_coarse

    return ret


def render_rays(
        ray_batch,
        mean_volume,
        cov_volume,
        features_2D,
        img,
        aabb,
        near_far_range,
        N_samples,
        N_rand=4096,
        nerf_mlp=None,
        img_meta=None,
        projector=None,
        mode='volume',  # volume and image
        nerf_sample_view=3,
        inv_uniform=False,
        N_importance=0,
        det=False,
        is_train=True,
        white_bkgd=False,
        render_testing=False):
    """The function of the nerf rendering."""

    ray_o = ray_batch['ray_o']
    ray_d = ray_batch['ray_d']
    gt_rgb = ray_batch['gt_rgb']
    gt_depth = ray_batch['gt_depth']
    nerf_sizes = ray_batch['nerf_sizes']
    if is_train:
        ray_o = ray_o.view(-1, 3)
        ray_d = ray_d.view(-1, 3)
        gt_rgb = gt_rgb.view(-1, 3)
        if gt_depth.shape[1] != 0:
            gt_depth = gt_depth.view(-1, 1)
            non_zero_depth = (gt_depth > 0).squeeze(-1)
            ray_o = ray_o[non_zero_depth]
            ray_d = ray_d[non_zero_depth]
            gt_rgb = gt_rgb[non_zero_depth]
            gt_depth = gt_depth[non_zero_depth]
        else:
            gt_depth = None
        total_rays = ray_d.shape[0]
        select_inds = rng.choice(total_rays, size=(N_rand, ), replace=False)
        ray_o = ray_o[select_inds]
        ray_d = ray_d[select_inds]
        gt_rgb = gt_rgb[select_inds]
        if gt_depth is not None:
            gt_depth = gt_depth[select_inds]

        rets = render_rays_func(
            ray_o,
            ray_d,
            mean_volume,
            cov_volume,
            features_2D,
            img,
            aabb,
            near_far_range,
            N_samples,
            N_rand,
            nerf_mlp,
            img_meta,
            projector,
            mode,  # volume and image
            nerf_sample_view,
            inv_uniform,
            N_importance,
            det,
            is_train,
            white_bkgd,
            gt_rgb,
            gt_depth)

    elif render_testing:
        nerf_size = nerf_sizes[0]
        view_num = ray_o.shape[1]
        H = nerf_size[0][0]
        W = nerf_size[0][1]
        ray_o = ray_o.view(-1, 3)
        ray_d = ray_d.view(-1, 3)
        gt_rgb = gt_rgb.view(-1, 3)
        print(gt_rgb.shape)
        if len(gt_depth) != 0:
            gt_depth = gt_depth.view(-1, 1)
        else:
            gt_depth = None
        assert view_num * H * W == ray_o.shape[0]
        num_rays = ray_o.shape[0]
        results = []
        rgbs = []
        for i in range(0, num_rays, N_rand):
            ray_o_chunck = ray_o[i:i + N_rand, :]
            ray_d_chunck = ray_d[i:i + N_rand, :]

            ret = render_rays_func(ray_o_chunck, ray_d_chunck, mean_volume,
                                   cov_volume, features_2D, img, aabb,
                                   near_far_range, N_samples, N_rand, nerf_mlp,
                                   img_meta, projector, mode, nerf_sample_view,
                                   inv_uniform, N_importance, True, is_train,
                                   white_bkgd, gt_rgb, gt_depth)
            results.append(ret)

        rgbs = []
        depths = []

        if results[0]['outputs_coarse'] is not None:
            for i in range(len(results)):
                rgb = results[i]['outputs_coarse']['rgb']
                rgbs.append(rgb)
                depth = results[i]['outputs_coarse']['depth']
                depths.append(depth)

        rets = {
            'outputs_coarse': {
                'rgb': torch.cat(rgbs, dim=0).view(view_num, H, W, 3),
                'depth': torch.cat(depths, dim=0).view(view_num, H, W, 1),
            },
            'gt_rgb':
            gt_rgb.view(view_num, H, W, 3),
            'gt_depth':
            gt_depth.view(view_num, H, W, 1) if gt_depth is not None else None,
        }
    else:
        rets = None
    return rets