File size: 14,974 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# Copyright (c) OpenMMLab. All rights reserved.
# Attention: This file is mainly modified based on the file with the same
# name in the original project. For more details, please refer to the
# origin project.
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
rng = np.random.RandomState(234)
# helper functions for nerf ray rendering
def volume_sampling(sample_pts, features, aabb):
B, C, D, W, H = features.shape
assert B == 1
aabb = torch.Tensor(aabb).to(sample_pts.device)
N_rays, N_samples, coords = sample_pts.shape
sample_pts = sample_pts.view(1, N_rays * N_samples, 1, 1,
3).repeat(B, 1, 1, 1, 1)
aabbSize = aabb[1] - aabb[0]
invgridSize = 1.0 / aabbSize * 2
norm_pts = (sample_pts - aabb[0]) * invgridSize - 1
sample_features = F.grid_sample(
features, norm_pts, align_corners=True, padding_mode='border')
masks = ((norm_pts < 1) & (norm_pts > -1)).float().sum(dim=-1)
masks = (masks.view(N_rays, N_samples) == 3)
return sample_features.view(C, N_rays,
N_samples).permute(1, 2, 0).contiguous(), masks
def _compute_projection(img_meta):
views = len(img_meta['lidar2img']['extrinsic'])
intrinsic = torch.tensor(img_meta['lidar2img']['intrinsic'][:4, :4])
ratio = img_meta['ori_shape'][0] / img_meta['img_shape'][0]
intrinsic[:2] /= ratio
intrinsic = intrinsic.unsqueeze(0).view(1, 16).repeat(views, 1)
img_size = torch.Tensor(img_meta['img_shape'][:2]).to(intrinsic.device)
img_size = img_size.unsqueeze(0).repeat(views, 1)
extrinsics = []
for v in range(views):
extrinsics.append(
torch.Tensor(img_meta['lidar2img']['extrinsic'][v]).to(
intrinsic.device))
extrinsic = torch.stack(extrinsics).view(views, 16)
train_cameras = torch.cat([img_size, intrinsic, extrinsic], dim=-1)
return train_cameras.unsqueeze(0)
def compute_mask_points(feature, mask):
weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)
mean = torch.sum(feature * weight, dim=2, keepdim=True)
var = torch.sum((feature - mean)**2, dim=2, keepdim=True)
var = var / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)
var = torch.exp(-var)
return mean, var
def sample_pdf(bins, weights, N_samples, det=False):
"""Helper function used for sampling.
Args:
bins (tensor):Tensor of shape [N_rays, M+1], M is the number of bins
weights (tensor):Tensor of shape [N_rays, M+1], M is the number of bins
N_samples (int):Number of samples along each ray
det (bool):If True, will perform deterministic sampling
Returns:
samples (tuple): [N_rays, N_samples]
"""
M = weights.shape[1]
weights += 1e-5
# Get pdf
pdf = weights / torch.sum(weights, dim=-1, keepdim=True)
cdf = torch.cumsum(pdf, dim=-1)
cdf = torch.cat([torch.zeros_like(cdf[:, 0:1]), cdf], dim=-1)
# Take uniform samples
if det:
u = torch.linspace(0., 1., N_samples, device=bins.device)
u = u.unsqueeze(0).repeat(bins.shape[0], 1)
else:
u = torch.rand(bins.shape[0], N_samples, device=bins.device)
# Invert CDF
above_inds = torch.zeros_like(u, dtype=torch.long)
for i in range(M):
above_inds += (u >= cdf[:, i:i + 1]).long()
# random sample inside each bin
below_inds = torch.clamp(above_inds - 1, min=0)
inds_g = torch.stack((below_inds, above_inds), dim=2)
cdf = cdf.unsqueeze(1).repeat(1, N_samples, 1)
cdf_g = torch.gather(input=cdf, dim=-1, index=inds_g)
bins = bins.unsqueeze(1).repeat(1, N_samples, 1)
bins_g = torch.gather(input=bins, dim=-1, index=inds_g)
denom = cdf_g[:, :, 1] - cdf_g[:, :, 0]
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[:, :, 0]) / denom
samples = bins_g[:, :, 0] + t * (bins_g[:, :, 1] - bins_g[:, :, 0])
return samples
def sample_along_camera_ray(ray_o,
ray_d,
depth_range,
N_samples,
inv_uniform=False,
det=False):
"""Sampling along the camera ray.
Args:
ray_o (tensor): Origin of the ray in scene coordinate system;
tensor of shape [N_rays, 3]
ray_d (tensor): Homogeneous ray direction vectors in
scene coordinate system; tensor of shape [N_rays, 3]
depth_range (tuple): [near_depth, far_depth]
inv_uniform (bool): If True,uniformly sampling inverse depth.
det (bool): If True, will perform deterministic sampling.
Returns:
pts (tensor): Tensor of shape [N_rays, N_samples, 3]
z_vals (tensor): Tensor of shape [N_rays, N_samples]
"""
# will sample inside [near_depth, far_depth]
# assume the nearest possible depth is at least (min_ratio * depth)
near_depth_value = depth_range[0]
far_depth_value = depth_range[1]
assert near_depth_value > 0 and far_depth_value > 0 \
and far_depth_value > near_depth_value
near_depth = near_depth_value * torch.ones_like(ray_d[..., 0])
far_depth = far_depth_value * torch.ones_like(ray_d[..., 0])
if inv_uniform:
start = 1. / near_depth
step = (1. / far_depth - start) / (N_samples - 1)
inv_z_vals = torch.stack([start + i * step for i in range(N_samples)],
dim=1)
z_vals = 1. / inv_z_vals
else:
start = near_depth
step = (far_depth - near_depth) / (N_samples - 1)
z_vals = torch.stack([start + i * step for i in range(N_samples)],
dim=1)
if not det:
# get intervals between samples
mids = .5 * (z_vals[:, 1:] + z_vals[:, :-1])
upper = torch.cat([mids, z_vals[:, -1:]], dim=-1)
lower = torch.cat([z_vals[:, 0:1], mids], dim=-1)
# uniform samples in those intervals
t_rand = torch.rand_like(z_vals)
z_vals = lower + (upper - lower) * t_rand
ray_d = ray_d.unsqueeze(1).repeat(1, N_samples, 1)
ray_o = ray_o.unsqueeze(1).repeat(1, N_samples, 1)
pts = z_vals.unsqueeze(2) * ray_d + ray_o # [N_rays, N_samples, 3]
return pts, z_vals
# ray rendering of nerf
def raw2outputs(raw, z_vals, mask, white_bkgd=False):
"""Transform raw data to outputs:
Args:
raw(tensor):Raw network output.Tensor of shape [N_rays, N_samples, 4]
z_vals(tensor):Depth of point samples along rays.
Tensor of shape [N_rays, N_samples]
ray_d(tensor):[N_rays, 3]
Returns:
ret(dict):
-rgb(tensor):[N_rays, 3]
-depth(tensor):[N_rays,]
-weights(tensor):[N_rays,]
-depth_std(tensor):[N_rays,]
"""
rgb = raw[:, :, :3] # [N_rays, N_samples, 3]
sigma = raw[:, :, 3] # [N_rays, N_samples]
# note: we did not use the intervals here,
# because in practice different scenes from COLMAP can have
# very different scales, and using interval can affect
# the model's generalization ability.
# Therefore we don't use the intervals for both training and evaluation.
sigma2alpha = lambda sigma, dists: 1. - torch.exp(-sigma) # noqa
# point samples are ordered with increasing depth
# interval between samples
dists = z_vals[:, 1:] - z_vals[:, :-1]
dists = torch.cat((dists, dists[:, -1:]), dim=-1)
alpha = sigma2alpha(sigma, dists)
T = torch.cumprod(1. - alpha + 1e-10, dim=-1)[:, :-1]
T = torch.cat((torch.ones_like(T[:, 0:1]), T), dim=-1)
# maths show weights, and summation of weights along a ray,
# are always inside [0, 1]
weights = alpha * T
rgb_map = torch.sum(weights.unsqueeze(2) * rgb, dim=1)
if white_bkgd:
rgb_map = rgb_map + (1. - torch.sum(weights, dim=-1, keepdim=True))
if mask is not None:
mask = mask.float().sum(dim=1) > 8
depth_map = torch.sum(
weights * z_vals, dim=-1) / (
torch.sum(weights, dim=-1) + 1e-8)
depth_map = torch.clamp(depth_map, z_vals.min(), z_vals.max())
ret = OrderedDict([('rgb', rgb_map), ('depth', depth_map),
('weights', weights), ('mask', mask), ('alpha', alpha),
('z_vals', z_vals), ('transparency', T)])
return ret
def render_rays_func(
ray_o,
ray_d,
mean_volume,
cov_volume,
features_2D,
img,
aabb,
near_far_range,
N_samples,
N_rand=4096,
nerf_mlp=None,
img_meta=None,
projector=None,
mode='volume', # volume and image
nerf_sample_view=3,
inv_uniform=False,
N_importance=0,
det=False,
is_train=True,
white_bkgd=False,
gt_rgb=None,
gt_depth=None):
ret = {
'outputs_coarse': None,
'outputs_fine': None,
'gt_rgb': gt_rgb,
'gt_depth': gt_depth
}
# pts: [N_rays, N_samples, 3]
# z_vals: [N_rays, N_samples]
pts, z_vals = sample_along_camera_ray(
ray_o=ray_o,
ray_d=ray_d,
depth_range=near_far_range,
N_samples=N_samples,
inv_uniform=inv_uniform,
det=det)
N_rays, N_samples = pts.shape[:2]
if mode == 'image':
img = img.permute(0, 2, 3, 1).unsqueeze(0)
train_camera = _compute_projection(img_meta).to(img.device)
rgb_feat, mask = projector.compute(
pts, img, train_camera, features_2D, grid_sample=True)
pixel_mask = mask[..., 0].sum(dim=2) > 1
mean, var = compute_mask_points(rgb_feat, mask)
globalfeat = torch.cat([mean, var], dim=-1).squeeze(2)
rgb_pts, density_pts = nerf_mlp(pts, ray_d, globalfeat)
raw_coarse = torch.cat([rgb_pts, density_pts], dim=-1)
ret['sigma'] = density_pts
elif mode == 'volume':
mean_pts, inbound_masks = volume_sampling(pts, mean_volume, aabb)
cov_pts, inbound_masks = volume_sampling(pts, cov_volume, aabb)
# This masks is for indicating which points outside of aabb
img = img.permute(0, 2, 3, 1).unsqueeze(0)
train_camera = _compute_projection(img_meta).to(img.device)
_, view_mask = projector.compute(pts, img, train_camera, None)
pixel_mask = view_mask[..., 0].sum(dim=2) > 1
# plot_3D_vis(pts, aabb, img, train_camera)
# [N_rays, N_samples], should at least have 2 observations
# This mask is for indicating which points do not have projected point
globalpts = torch.cat([mean_pts, cov_pts], dim=-1)
rgb_pts, density_pts = nerf_mlp(pts, ray_d, globalpts)
density_pts = density_pts * inbound_masks.unsqueeze(dim=-1)
raw_coarse = torch.cat([rgb_pts, density_pts], dim=-1)
outputs_coarse = raw2outputs(
raw_coarse, z_vals, pixel_mask, white_bkgd=white_bkgd)
ret['outputs_coarse'] = outputs_coarse
return ret
def render_rays(
ray_batch,
mean_volume,
cov_volume,
features_2D,
img,
aabb,
near_far_range,
N_samples,
N_rand=4096,
nerf_mlp=None,
img_meta=None,
projector=None,
mode='volume', # volume and image
nerf_sample_view=3,
inv_uniform=False,
N_importance=0,
det=False,
is_train=True,
white_bkgd=False,
render_testing=False):
"""The function of the nerf rendering."""
ray_o = ray_batch['ray_o']
ray_d = ray_batch['ray_d']
gt_rgb = ray_batch['gt_rgb']
gt_depth = ray_batch['gt_depth']
nerf_sizes = ray_batch['nerf_sizes']
if is_train:
ray_o = ray_o.view(-1, 3)
ray_d = ray_d.view(-1, 3)
gt_rgb = gt_rgb.view(-1, 3)
if gt_depth.shape[1] != 0:
gt_depth = gt_depth.view(-1, 1)
non_zero_depth = (gt_depth > 0).squeeze(-1)
ray_o = ray_o[non_zero_depth]
ray_d = ray_d[non_zero_depth]
gt_rgb = gt_rgb[non_zero_depth]
gt_depth = gt_depth[non_zero_depth]
else:
gt_depth = None
total_rays = ray_d.shape[0]
select_inds = rng.choice(total_rays, size=(N_rand, ), replace=False)
ray_o = ray_o[select_inds]
ray_d = ray_d[select_inds]
gt_rgb = gt_rgb[select_inds]
if gt_depth is not None:
gt_depth = gt_depth[select_inds]
rets = render_rays_func(
ray_o,
ray_d,
mean_volume,
cov_volume,
features_2D,
img,
aabb,
near_far_range,
N_samples,
N_rand,
nerf_mlp,
img_meta,
projector,
mode, # volume and image
nerf_sample_view,
inv_uniform,
N_importance,
det,
is_train,
white_bkgd,
gt_rgb,
gt_depth)
elif render_testing:
nerf_size = nerf_sizes[0]
view_num = ray_o.shape[1]
H = nerf_size[0][0]
W = nerf_size[0][1]
ray_o = ray_o.view(-1, 3)
ray_d = ray_d.view(-1, 3)
gt_rgb = gt_rgb.view(-1, 3)
print(gt_rgb.shape)
if len(gt_depth) != 0:
gt_depth = gt_depth.view(-1, 1)
else:
gt_depth = None
assert view_num * H * W == ray_o.shape[0]
num_rays = ray_o.shape[0]
results = []
rgbs = []
for i in range(0, num_rays, N_rand):
ray_o_chunck = ray_o[i:i + N_rand, :]
ray_d_chunck = ray_d[i:i + N_rand, :]
ret = render_rays_func(ray_o_chunck, ray_d_chunck, mean_volume,
cov_volume, features_2D, img, aabb,
near_far_range, N_samples, N_rand, nerf_mlp,
img_meta, projector, mode, nerf_sample_view,
inv_uniform, N_importance, True, is_train,
white_bkgd, gt_rgb, gt_depth)
results.append(ret)
rgbs = []
depths = []
if results[0]['outputs_coarse'] is not None:
for i in range(len(results)):
rgb = results[i]['outputs_coarse']['rgb']
rgbs.append(rgb)
depth = results[i]['outputs_coarse']['depth']
depths.append(depth)
rets = {
'outputs_coarse': {
'rgb': torch.cat(rgbs, dim=0).view(view_num, H, W, 3),
'depth': torch.cat(depths, dim=0).view(view_num, H, W, 1),
},
'gt_rgb':
gt_rgb.view(view_num, H, W, 3),
'gt_depth':
gt_depth.view(view_num, H, W, 1) if gt_depth is not None else None,
}
else:
rets = None
return rets
|