File size: 19,086 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import math
import warnings

import torch
import torch.nn as nn
from mmcv.ops.multi_scale_deform_attn import (
    MultiScaleDeformableAttnFunction, multi_scale_deformable_attn_pytorch)
from mmengine.model import BaseModule, constant_init, xavier_init

from mmdet3d.registry import MODELS


@MODELS.register_module()
class TPVImageCrossAttention(BaseModule):
    """An attention module used in TPVFormer.

    Args:
        embed_dims (int): The embedding dimension of Attention.
            Default: 256.
        num_cams (int): The number of cameras
        dropout (float): A Dropout layer on `inp_residual`.
            Default: 0.1.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): Whether the first dimension of the input is batch.
        deformable_attention: (dict): The config for the deformable
            attention used in SCA.
        tpv_h (int): The height of the TPV.
        tpv_w (int): The width of the TPV.
        tpv_z (int): The depth of the TPV.
    """

    def __init__(self,
                 embed_dims=256,
                 num_cams=6,
                 pc_range=None,
                 dropout=0.1,
                 init_cfg=None,
                 batch_first=True,
                 deformable_attention=dict(
                     type='MSDeformableAttention3D',
                     embed_dims=256,
                     num_levels=4),
                 tpv_h=None,
                 tpv_w=None,
                 tpv_z=None):
        super().__init__(init_cfg)

        self.init_cfg = init_cfg
        self.dropout = nn.Dropout(dropout)
        self.pc_range = pc_range
        self.fp16_enabled = False
        self.deformable_attention = MODELS.build(deformable_attention)
        self.embed_dims = embed_dims
        self.num_cams = num_cams
        self.output_proj = nn.Linear(embed_dims, embed_dims)
        self.batch_first = batch_first
        self.tpv_h, self.tpv_w, self.tpv_z = tpv_h, tpv_w, tpv_z
        self.init_weight()

    def init_weight(self):
        """Default initialization for Parameters of Module."""
        xavier_init(self.output_proj, distribution='uniform', bias=0.)

    def forward(self,
                query,
                key,
                value,
                residual=None,
                spatial_shapes=None,
                reference_points_cams=None,
                tpv_masks=None,
                level_start_index=None):
        """Forward Function of Detr3DCrossAtten.

        Args:
            query (Tensor): Query of Transformer with shape
                (bs, num_query, embed_dims).
            key (Tensor): The key tensor with shape
                (bs, num_key, embed_dims).
            value (Tensor): The value tensor with shape
                (bs, num_key, embed_dims).
            residual (Tensor): The tensor used for addition, with the
                same shape as `x`. Default None. If None, `x` will be used.
            spatial_shapes (Tensor): Spatial shape of features in
                different level. With shape  (num_levels, 2),
                last dimension represent (h, w).
            tpv_masks (List[Tensor]): The mask of each views.
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            reference_points_cams (List[Tensor]): The reference points in
                each camera.
            tpv_masks (List[Tensor]): The mask of each views.
            level_start_index (List[int]): The start index of each level.

        Returns:
             Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """
        if key is None:
            key = query
        if value is None:
            value = key

        if residual is None:
            inp_residual = query
        bs, _, _ = query.size()

        queries = torch.split(
            query, [
                self.tpv_h * self.tpv_w, self.tpv_z * self.tpv_h,
                self.tpv_w * self.tpv_z
            ],
            dim=1)
        if residual is None:
            slots = [torch.zeros_like(q) for q in queries]
        indexeses = []
        max_lens = []
        queries_rebatches = []
        reference_points_rebatches = []
        for tpv_idx, tpv_mask in enumerate(tpv_masks):
            indexes = []
            for _, mask_per_img in enumerate(tpv_mask):
                index_query_per_img = mask_per_img[0].sum(
                    -1).nonzero().squeeze(-1)
                indexes.append(index_query_per_img)
            max_len = max([len(each) for each in indexes])
            max_lens.append(max_len)
            indexeses.append(indexes)

            reference_points_cam = reference_points_cams[tpv_idx]
            D = reference_points_cam.size(3)

            queries_rebatch = queries[tpv_idx].new_zeros(
                [bs * self.num_cams, max_len, self.embed_dims])
            reference_points_rebatch = reference_points_cam.new_zeros(
                [bs * self.num_cams, max_len, D, 2])

            for i, reference_points_per_img in enumerate(reference_points_cam):
                for j in range(bs):
                    index_query_per_img = indexes[i]
                    queries_rebatch[j * self.num_cams +
                                    i, :len(index_query_per_img)] = queries[
                                        tpv_idx][j, index_query_per_img]
                    reference_points_rebatch[j * self.num_cams + i, :len(
                        index_query_per_img)] = reference_points_per_img[
                            j, index_query_per_img]

            queries_rebatches.append(queries_rebatch)
            reference_points_rebatches.append(reference_points_rebatch)

        num_cams, l, bs, embed_dims = key.shape

        key = key.permute(0, 2, 1, 3).view(self.num_cams * bs, l,
                                           self.embed_dims)
        value = value.permute(0, 2, 1, 3).view(self.num_cams * bs, l,
                                               self.embed_dims)

        queries = self.deformable_attention(
            query=queries_rebatches,
            key=key,
            value=value,
            reference_points=reference_points_rebatches,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
        )

        for tpv_idx, indexes in enumerate(indexeses):
            for i, index_query_per_img in enumerate(indexes):
                for j in range(bs):
                    slots[tpv_idx][j, index_query_per_img] += queries[tpv_idx][
                        j * self.num_cams + i, :len(index_query_per_img)]

            count = tpv_masks[tpv_idx].sum(-1) > 0
            count = count.permute(1, 2, 0).sum(-1)
            count = torch.clamp(count, min=1.0)
            slots[tpv_idx] = slots[tpv_idx] / count[..., None]
        slots = torch.cat(slots, dim=1)
        slots = self.output_proj(slots)

        return self.dropout(slots) + inp_residual


@MODELS.register_module()
class TPVMSDeformableAttention3D(BaseModule):
    """An attention module used in tpvFormer based on Deformable-Detr.
    `Deformable DETR: Deformable Transformers for End-to-End Object Detection.

    <https://arxiv.org/pdf/2010.04159.pdf>`_.
    Args:
        embed_dims (int): The embedding dimension of Attention.
            Default: 256.
        num_heads (int): Parallel attention heads. Default: 64.
        num_levels (int): The number of feature map used in
            Attention. Default: 4.
        num_points (int): The number of sampling points for
            each query in each head. Default: 4.
        im2col_step (int): The step used in image_to_column.
            Default: 64.
        dropout (float): A Dropout layer on `inp_identity`.
            Default: 0.1.
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dim)
            or (n, batch, embed_dim). Default to False.
        norm_cfg (dict): Config dict for normalization layer.
            Default: None.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(
        self,
        embed_dims=256,
        num_heads=8,
        num_levels=4,
        num_points=[8, 64, 64],
        num_z_anchors=[4, 32, 32],
        pc_range=None,
        im2col_step=64,
        dropout=0.1,
        batch_first=True,
        norm_cfg=None,
        init_cfg=None,
        floor_sampling_offset=True,
        tpv_h=None,
        tpv_w=None,
        tpv_z=None,
    ):
        super().__init__(init_cfg)
        if embed_dims % num_heads != 0:
            raise ValueError(f'embed_dims must be divisible by num_heads, '
                             f'but got {embed_dims} and {num_heads}')
        dim_per_head = embed_dims // num_heads
        self.norm_cfg = norm_cfg
        self.batch_first = batch_first
        self.output_proj = None
        self.fp16_enabled = False

        # you'd better set dim_per_head to a power of 2
        # which is more efficient in the CUDA implementation
        def _is_power_of_2(n):
            if (not isinstance(n, int)) or (n < 0):
                raise ValueError(
                    'invalid input for _is_power_of_2: {} (type: {})'.format(
                        n, type(n)))
            return (n & (n - 1) == 0) and n != 0

        if not _is_power_of_2(dim_per_head):
            warnings.warn(
                "You'd better set embed_dims in "
                'MultiScaleDeformAttention to make '
                'the dimension of each attention head a power of 2 '
                'which is more efficient in our CUDA implementation.')

        self.im2col_step = im2col_step
        self.embed_dims = embed_dims
        self.num_levels = num_levels
        self.num_heads = num_heads
        self.num_points = num_points
        self.num_z_anchors = num_z_anchors
        self.base_num_points = num_points[0]
        self.base_z_anchors = num_z_anchors[0]
        self.points_multiplier = [
            points // self.base_z_anchors for points in num_z_anchors
        ]
        self.pc_range = pc_range
        self.tpv_h, self.tpv_w, self.tpv_z = tpv_h, tpv_w, tpv_z
        self.sampling_offsets = nn.ModuleList([
            nn.Linear(embed_dims, num_heads * num_levels * num_points[i] * 2)
            for i in range(3)
        ])
        self.floor_sampling_offset = floor_sampling_offset
        self.attention_weights = nn.ModuleList([
            nn.Linear(embed_dims, num_heads * num_levels * num_points[i])
            for i in range(3)
        ])
        self.value_proj = nn.Linear(embed_dims, embed_dims)

    def init_weights(self):
        """Default initialization for Parameters of Module."""
        device = next(self.parameters()).device
        for i in range(3):
            constant_init(self.sampling_offsets[i], 0.)
            thetas = torch.arange(
                self.num_heads, dtype=torch.float32,
                device=device) * (2.0 * math.pi / self.num_heads)
            grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
            grid_init = (grid_init /
                         grid_init.abs().max(-1, keepdim=True)[0]).view(
                             self.num_heads, 1, 1,
                             2).repeat(1, self.num_levels, self.num_points[i],
                                       1)
            grid_init = grid_init.reshape(self.num_heads, self.num_levels,
                                          self.num_z_anchors[i], -1, 2)
            for j in range(self.num_points[i] // self.num_z_anchors[i]):
                grid_init[:, :, :, j, :] *= j + 1

            self.sampling_offsets[i].bias.data = grid_init.view(-1)
            constant_init(self.attention_weights[i], val=0., bias=0.)
        xavier_init(self.value_proj, distribution='uniform', bias=0.)
        xavier_init(self.output_proj, distribution='uniform', bias=0.)
        self._is_init = True

    def get_sampling_offsets_and_attention(self, queries):
        offsets = []
        attns = []
        for i, (query, fc, attn) in enumerate(
                zip(queries, self.sampling_offsets, self.attention_weights)):
            bs, l, d = query.shape

            offset = fc(query).reshape(bs, l, self.num_heads, self.num_levels,
                                       self.points_multiplier[i], -1, 2)
            offset = offset.permute(0, 1, 4, 2, 3, 5, 6).flatten(1, 2)
            offsets.append(offset)

            attention = attn(query).reshape(bs, l, self.num_heads, -1)
            attention = attention.softmax(-1)
            attention = attention.view(bs, l, self.num_heads, self.num_levels,
                                       self.points_multiplier[i], -1)
            attention = attention.permute(0, 1, 4, 2, 3, 5).flatten(1, 2)
            attns.append(attention)

        offsets = torch.cat(offsets, dim=1)
        attns = torch.cat(attns, dim=1)
        return offsets, attns

    def reshape_reference_points(self, reference_points):
        reference_point_list = []
        for i, reference_point in enumerate(reference_points):
            bs, l, z_anchors, _ = reference_point.shape
            reference_point = reference_point.reshape(
                bs, l, self.points_multiplier[i], -1, 2)
            reference_point = reference_point.flatten(1, 2)
            reference_point_list.append(reference_point)
        return torch.cat(reference_point_list, dim=1)

    def reshape_output(self, output, lens):
        bs, _, d = output.shape
        outputs = torch.split(
            output, [
                lens[0] * self.points_multiplier[0], lens[1] *
                self.points_multiplier[1], lens[2] * self.points_multiplier[2]
            ],
            dim=1)

        outputs = [
            o.reshape(bs, -1, self.points_multiplier[i], d).sum(dim=2)
            for i, o in enumerate(outputs)
        ]
        return outputs

    def forward(self,
                query,
                key=None,
                value=None,
                identity=None,
                reference_points=None,
                spatial_shapes=None,
                level_start_index=None,
                **kwargs):
        """Forward Function of MultiScaleDeformAttention.

        Args:
            query (Tensor): Query of Transformer with shape
                ( bs, num_query, embed_dims).
            key (Tensor): The key tensor with shape
                `(bs, num_key,  embed_dims)`.
            value (Tensor): The value tensor with shape
                `(bs, num_key,  embed_dims)`.
            identity (Tensor): The tensor used for addition, with the
                same shape as `query`. Default None. If None,
                `query` will be used.
            reference_points (Tensor):  The normalized reference
                points with shape (bs, num_query, num_levels, 2),
                all elements is range in [0, 1], top-left (0,0),
                bottom-right (1, 1), including padding area.
                or (N, Length_{query}, num_levels, 4), add
                additional two dimensions is (w, h) to
                form reference boxes.
            spatial_shapes (Tensor): Spatial shape of features in
                different levels. With shape (num_levels, 2),
                last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape ``(num_levels, )`` and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
        Returns:
             Tensor: forwarded results with shape [bs, num_query, embed_dims].
        """

        if value is None:
            value = query
        if identity is None:
            identity = query

        if not self.batch_first:
            # change to (bs, num_query ,embed_dims)
            query = [q.permute(1, 0, 2) for q in query]
            value = value.permute(1, 0, 2)

        # bs, num_query, _ = query.shape
        query_lens = [q.shape[1] for q in query]
        bs, num_value, _ = value.shape
        assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value

        value = self.value_proj(value)
        value = value.view(bs, num_value, self.num_heads, -1)

        sampling_offsets, attention_weights = \
            self.get_sampling_offsets_and_attention(query)

        reference_points = self.reshape_reference_points(reference_points)

        if reference_points.shape[-1] == 2:
            """For each tpv query, it owns `num_Z_anchors` in 3D space that
            having different heights. After projecting, each tpv query has
            `num_Z_anchors` reference points in each 2D image. For each
            referent point, we sample `num_points` sampling points.

            For `num_Z_anchors` reference points,
            it has overall `num_points * num_Z_anchors` sampling points.
            """
            offset_normalizer = torch.stack(
                [spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)

            bs, num_query, num_Z_anchors, xy = reference_points.shape
            reference_points = reference_points[:, :, None, None, :, None, :]
            sampling_offsets = sampling_offsets / \
                offset_normalizer[None, None, None, :, None, :]
            bs, num_query, num_heads, num_levels, num_all_points, xy = \
                sampling_offsets.shape
            sampling_offsets = sampling_offsets.view(
                bs, num_query, num_heads, num_levels, num_Z_anchors,
                num_all_points // num_Z_anchors, xy)
            sampling_locations = reference_points + sampling_offsets
            bs, num_query, num_heads, num_levels, num_points, num_Z_anchors, \
                xy = sampling_locations.shape
            assert num_all_points == num_points * num_Z_anchors

            sampling_locations = sampling_locations.view(
                bs, num_query, num_heads, num_levels, num_all_points, xy)

            if self.floor_sampling_offset:
                sampling_locations = sampling_locations - torch.floor(
                    sampling_locations)

        elif reference_points.shape[-1] == 4:
            assert False
        else:
            raise ValueError(
                f'Last dim of reference_points must be'
                f' 2 or 4, but get {reference_points.shape[-1]} instead.')

        if torch.cuda.is_available() and value.is_cuda:
            output = MultiScaleDeformableAttnFunction.apply(
                value, spatial_shapes, level_start_index, sampling_locations,
                attention_weights, self.im2col_step)
        else:
            output = multi_scale_deformable_attn_pytorch(
                value, spatial_shapes, sampling_locations, attention_weights)

        output = self.reshape_output(output, query_lens)
        if not self.batch_first:
            output = [o.permute(1, 0, 2) for o in output]

        return output