File size: 19,086 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import math
import warnings
import torch
import torch.nn as nn
from mmcv.ops.multi_scale_deform_attn import (
MultiScaleDeformableAttnFunction, multi_scale_deformable_attn_pytorch)
from mmengine.model import BaseModule, constant_init, xavier_init
from mmdet3d.registry import MODELS
@MODELS.register_module()
class TPVImageCrossAttention(BaseModule):
"""An attention module used in TPVFormer.
Args:
embed_dims (int): The embedding dimension of Attention.
Default: 256.
num_cams (int): The number of cameras
dropout (float): A Dropout layer on `inp_residual`.
Default: 0.1.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
batch_first (bool): Whether the first dimension of the input is batch.
deformable_attention: (dict): The config for the deformable
attention used in SCA.
tpv_h (int): The height of the TPV.
tpv_w (int): The width of the TPV.
tpv_z (int): The depth of the TPV.
"""
def __init__(self,
embed_dims=256,
num_cams=6,
pc_range=None,
dropout=0.1,
init_cfg=None,
batch_first=True,
deformable_attention=dict(
type='MSDeformableAttention3D',
embed_dims=256,
num_levels=4),
tpv_h=None,
tpv_w=None,
tpv_z=None):
super().__init__(init_cfg)
self.init_cfg = init_cfg
self.dropout = nn.Dropout(dropout)
self.pc_range = pc_range
self.fp16_enabled = False
self.deformable_attention = MODELS.build(deformable_attention)
self.embed_dims = embed_dims
self.num_cams = num_cams
self.output_proj = nn.Linear(embed_dims, embed_dims)
self.batch_first = batch_first
self.tpv_h, self.tpv_w, self.tpv_z = tpv_h, tpv_w, tpv_z
self.init_weight()
def init_weight(self):
"""Default initialization for Parameters of Module."""
xavier_init(self.output_proj, distribution='uniform', bias=0.)
def forward(self,
query,
key,
value,
residual=None,
spatial_shapes=None,
reference_points_cams=None,
tpv_masks=None,
level_start_index=None):
"""Forward Function of Detr3DCrossAtten.
Args:
query (Tensor): Query of Transformer with shape
(bs, num_query, embed_dims).
key (Tensor): The key tensor with shape
(bs, num_key, embed_dims).
value (Tensor): The value tensor with shape
(bs, num_key, embed_dims).
residual (Tensor): The tensor used for addition, with the
same shape as `x`. Default None. If None, `x` will be used.
spatial_shapes (Tensor): Spatial shape of features in
different level. With shape (num_levels, 2),
last dimension represent (h, w).
tpv_masks (List[Tensor]): The mask of each views.
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
reference_points_cams (List[Tensor]): The reference points in
each camera.
tpv_masks (List[Tensor]): The mask of each views.
level_start_index (List[int]): The start index of each level.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
if key is None:
key = query
if value is None:
value = key
if residual is None:
inp_residual = query
bs, _, _ = query.size()
queries = torch.split(
query, [
self.tpv_h * self.tpv_w, self.tpv_z * self.tpv_h,
self.tpv_w * self.tpv_z
],
dim=1)
if residual is None:
slots = [torch.zeros_like(q) for q in queries]
indexeses = []
max_lens = []
queries_rebatches = []
reference_points_rebatches = []
for tpv_idx, tpv_mask in enumerate(tpv_masks):
indexes = []
for _, mask_per_img in enumerate(tpv_mask):
index_query_per_img = mask_per_img[0].sum(
-1).nonzero().squeeze(-1)
indexes.append(index_query_per_img)
max_len = max([len(each) for each in indexes])
max_lens.append(max_len)
indexeses.append(indexes)
reference_points_cam = reference_points_cams[tpv_idx]
D = reference_points_cam.size(3)
queries_rebatch = queries[tpv_idx].new_zeros(
[bs * self.num_cams, max_len, self.embed_dims])
reference_points_rebatch = reference_points_cam.new_zeros(
[bs * self.num_cams, max_len, D, 2])
for i, reference_points_per_img in enumerate(reference_points_cam):
for j in range(bs):
index_query_per_img = indexes[i]
queries_rebatch[j * self.num_cams +
i, :len(index_query_per_img)] = queries[
tpv_idx][j, index_query_per_img]
reference_points_rebatch[j * self.num_cams + i, :len(
index_query_per_img)] = reference_points_per_img[
j, index_query_per_img]
queries_rebatches.append(queries_rebatch)
reference_points_rebatches.append(reference_points_rebatch)
num_cams, l, bs, embed_dims = key.shape
key = key.permute(0, 2, 1, 3).view(self.num_cams * bs, l,
self.embed_dims)
value = value.permute(0, 2, 1, 3).view(self.num_cams * bs, l,
self.embed_dims)
queries = self.deformable_attention(
query=queries_rebatches,
key=key,
value=value,
reference_points=reference_points_rebatches,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
)
for tpv_idx, indexes in enumerate(indexeses):
for i, index_query_per_img in enumerate(indexes):
for j in range(bs):
slots[tpv_idx][j, index_query_per_img] += queries[tpv_idx][
j * self.num_cams + i, :len(index_query_per_img)]
count = tpv_masks[tpv_idx].sum(-1) > 0
count = count.permute(1, 2, 0).sum(-1)
count = torch.clamp(count, min=1.0)
slots[tpv_idx] = slots[tpv_idx] / count[..., None]
slots = torch.cat(slots, dim=1)
slots = self.output_proj(slots)
return self.dropout(slots) + inp_residual
@MODELS.register_module()
class TPVMSDeformableAttention3D(BaseModule):
"""An attention module used in tpvFormer based on Deformable-Detr.
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
<https://arxiv.org/pdf/2010.04159.pdf>`_.
Args:
embed_dims (int): The embedding dimension of Attention.
Default: 256.
num_heads (int): Parallel attention heads. Default: 64.
num_levels (int): The number of feature map used in
Attention. Default: 4.
num_points (int): The number of sampling points for
each query in each head. Default: 4.
im2col_step (int): The step used in image_to_column.
Default: 64.
dropout (float): A Dropout layer on `inp_identity`.
Default: 0.1.
batch_first (bool): Key, Query and Value are shape of
(batch, n, embed_dim)
or (n, batch, embed_dim). Default to False.
norm_cfg (dict): Config dict for normalization layer.
Default: None.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(
self,
embed_dims=256,
num_heads=8,
num_levels=4,
num_points=[8, 64, 64],
num_z_anchors=[4, 32, 32],
pc_range=None,
im2col_step=64,
dropout=0.1,
batch_first=True,
norm_cfg=None,
init_cfg=None,
floor_sampling_offset=True,
tpv_h=None,
tpv_w=None,
tpv_z=None,
):
super().__init__(init_cfg)
if embed_dims % num_heads != 0:
raise ValueError(f'embed_dims must be divisible by num_heads, '
f'but got {embed_dims} and {num_heads}')
dim_per_head = embed_dims // num_heads
self.norm_cfg = norm_cfg
self.batch_first = batch_first
self.output_proj = None
self.fp16_enabled = False
# you'd better set dim_per_head to a power of 2
# which is more efficient in the CUDA implementation
def _is_power_of_2(n):
if (not isinstance(n, int)) or (n < 0):
raise ValueError(
'invalid input for _is_power_of_2: {} (type: {})'.format(
n, type(n)))
return (n & (n - 1) == 0) and n != 0
if not _is_power_of_2(dim_per_head):
warnings.warn(
"You'd better set embed_dims in "
'MultiScaleDeformAttention to make '
'the dimension of each attention head a power of 2 '
'which is more efficient in our CUDA implementation.')
self.im2col_step = im2col_step
self.embed_dims = embed_dims
self.num_levels = num_levels
self.num_heads = num_heads
self.num_points = num_points
self.num_z_anchors = num_z_anchors
self.base_num_points = num_points[0]
self.base_z_anchors = num_z_anchors[0]
self.points_multiplier = [
points // self.base_z_anchors for points in num_z_anchors
]
self.pc_range = pc_range
self.tpv_h, self.tpv_w, self.tpv_z = tpv_h, tpv_w, tpv_z
self.sampling_offsets = nn.ModuleList([
nn.Linear(embed_dims, num_heads * num_levels * num_points[i] * 2)
for i in range(3)
])
self.floor_sampling_offset = floor_sampling_offset
self.attention_weights = nn.ModuleList([
nn.Linear(embed_dims, num_heads * num_levels * num_points[i])
for i in range(3)
])
self.value_proj = nn.Linear(embed_dims, embed_dims)
def init_weights(self):
"""Default initialization for Parameters of Module."""
device = next(self.parameters()).device
for i in range(3):
constant_init(self.sampling_offsets[i], 0.)
thetas = torch.arange(
self.num_heads, dtype=torch.float32,
device=device) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (grid_init /
grid_init.abs().max(-1, keepdim=True)[0]).view(
self.num_heads, 1, 1,
2).repeat(1, self.num_levels, self.num_points[i],
1)
grid_init = grid_init.reshape(self.num_heads, self.num_levels,
self.num_z_anchors[i], -1, 2)
for j in range(self.num_points[i] // self.num_z_anchors[i]):
grid_init[:, :, :, j, :] *= j + 1
self.sampling_offsets[i].bias.data = grid_init.view(-1)
constant_init(self.attention_weights[i], val=0., bias=0.)
xavier_init(self.value_proj, distribution='uniform', bias=0.)
xavier_init(self.output_proj, distribution='uniform', bias=0.)
self._is_init = True
def get_sampling_offsets_and_attention(self, queries):
offsets = []
attns = []
for i, (query, fc, attn) in enumerate(
zip(queries, self.sampling_offsets, self.attention_weights)):
bs, l, d = query.shape
offset = fc(query).reshape(bs, l, self.num_heads, self.num_levels,
self.points_multiplier[i], -1, 2)
offset = offset.permute(0, 1, 4, 2, 3, 5, 6).flatten(1, 2)
offsets.append(offset)
attention = attn(query).reshape(bs, l, self.num_heads, -1)
attention = attention.softmax(-1)
attention = attention.view(bs, l, self.num_heads, self.num_levels,
self.points_multiplier[i], -1)
attention = attention.permute(0, 1, 4, 2, 3, 5).flatten(1, 2)
attns.append(attention)
offsets = torch.cat(offsets, dim=1)
attns = torch.cat(attns, dim=1)
return offsets, attns
def reshape_reference_points(self, reference_points):
reference_point_list = []
for i, reference_point in enumerate(reference_points):
bs, l, z_anchors, _ = reference_point.shape
reference_point = reference_point.reshape(
bs, l, self.points_multiplier[i], -1, 2)
reference_point = reference_point.flatten(1, 2)
reference_point_list.append(reference_point)
return torch.cat(reference_point_list, dim=1)
def reshape_output(self, output, lens):
bs, _, d = output.shape
outputs = torch.split(
output, [
lens[0] * self.points_multiplier[0], lens[1] *
self.points_multiplier[1], lens[2] * self.points_multiplier[2]
],
dim=1)
outputs = [
o.reshape(bs, -1, self.points_multiplier[i], d).sum(dim=2)
for i, o in enumerate(outputs)
]
return outputs
def forward(self,
query,
key=None,
value=None,
identity=None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
**kwargs):
"""Forward Function of MultiScaleDeformAttention.
Args:
query (Tensor): Query of Transformer with shape
( bs, num_query, embed_dims).
key (Tensor): The key tensor with shape
`(bs, num_key, embed_dims)`.
value (Tensor): The value tensor with shape
`(bs, num_key, embed_dims)`.
identity (Tensor): The tensor used for addition, with the
same shape as `query`. Default None. If None,
`query` will be used.
reference_points (Tensor): The normalized reference
points with shape (bs, num_query, num_levels, 2),
all elements is range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area.
or (N, Length_{query}, num_levels, 4), add
additional two dimensions is (w, h) to
form reference boxes.
spatial_shapes (Tensor): Spatial shape of features in
different levels. With shape (num_levels, 2),
last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape ``(num_levels, )`` and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
Returns:
Tensor: forwarded results with shape [bs, num_query, embed_dims].
"""
if value is None:
value = query
if identity is None:
identity = query
if not self.batch_first:
# change to (bs, num_query ,embed_dims)
query = [q.permute(1, 0, 2) for q in query]
value = value.permute(1, 0, 2)
# bs, num_query, _ = query.shape
query_lens = [q.shape[1] for q in query]
bs, num_value, _ = value.shape
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
value = self.value_proj(value)
value = value.view(bs, num_value, self.num_heads, -1)
sampling_offsets, attention_weights = \
self.get_sampling_offsets_and_attention(query)
reference_points = self.reshape_reference_points(reference_points)
if reference_points.shape[-1] == 2:
"""For each tpv query, it owns `num_Z_anchors` in 3D space that
having different heights. After projecting, each tpv query has
`num_Z_anchors` reference points in each 2D image. For each
referent point, we sample `num_points` sampling points.
For `num_Z_anchors` reference points,
it has overall `num_points * num_Z_anchors` sampling points.
"""
offset_normalizer = torch.stack(
[spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
bs, num_query, num_Z_anchors, xy = reference_points.shape
reference_points = reference_points[:, :, None, None, :, None, :]
sampling_offsets = sampling_offsets / \
offset_normalizer[None, None, None, :, None, :]
bs, num_query, num_heads, num_levels, num_all_points, xy = \
sampling_offsets.shape
sampling_offsets = sampling_offsets.view(
bs, num_query, num_heads, num_levels, num_Z_anchors,
num_all_points // num_Z_anchors, xy)
sampling_locations = reference_points + sampling_offsets
bs, num_query, num_heads, num_levels, num_points, num_Z_anchors, \
xy = sampling_locations.shape
assert num_all_points == num_points * num_Z_anchors
sampling_locations = sampling_locations.view(
bs, num_query, num_heads, num_levels, num_all_points, xy)
if self.floor_sampling_offset:
sampling_locations = sampling_locations - torch.floor(
sampling_locations)
elif reference_points.shape[-1] == 4:
assert False
else:
raise ValueError(
f'Last dim of reference_points must be'
f' 2 or 4, but get {reference_points.shape[-1]} instead.')
if torch.cuda.is_available() and value.is_cuda:
output = MultiScaleDeformableAttnFunction.apply(
value, spatial_shapes, level_start_index, sampling_locations,
attention_weights, self.im2col_step)
else:
output = multi_scale_deformable_attn_pytorch(
value, spatial_shapes, sampling_locations, attention_weights)
output = self.reshape_output(output, query_lens)
if not self.batch_first:
output = [o.permute(1, 0, 2) for o in output]
return output
|