File size: 9,192 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import copy
import warnings

import torch
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import (build_attention,
                                         build_feedforward_network)
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, ModuleList
from mmengine.registry import MODELS


@MODELS.register_module()
class TPVFormerLayer(BaseModule):
    """Base `TPVFormerLayer` for vision transformer.

    It can be built from `mmcv.ConfigDict` and support more flexible
    customization, for example, using any number of `FFN or LN ` and
    use different kinds of `attention` by specifying a list of `ConfigDict`
    named `attn_cfgs`. It is worth mentioning that it supports `prenorm`
    when you specifying `norm` as the first element of `operation_order`.
    More details about the `prenorm`: `On Layer Normalization in the
    Transformer Architecture <https://arxiv.org/abs/2002.04745>`_ .
    Args:
        attn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )):
            Configs for `self_attention` or `cross_attention` modules,
            The order of the configs in the list should be consistent with
            corresponding attentions in operation_order.
            If it is a dict, all of the attention modules in operation_order
            will be built with this config. Default: None.
        ffn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )):
            Configs for FFN, The order of the configs in the list should be
            consistent with corresponding ffn in operation_order.
            If it is a dict, all of the attention modules in operation_order
            will be built with this config.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
            Support `prenorm` when you specifying first element as `norm`.
            Default: None.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): Key, Query and Value are shape
            of (batch, n, embed_dim)
            or (n, batch, embed_dim). Default to False.
    """

    def __init__(self,
                 attn_cfgs=None,
                 ffn_cfgs=dict(
                     type='FFN',
                     feedforward_channels=1024,
                     num_fcs=2,
                     ffn_drop=0.,
                     act_cfg=dict(type='ReLU', inplace=True),
                 ),
                 operation_order=None,
                 norm_cfg=dict(type='LN'),
                 init_cfg=None,
                 batch_first=True,
                 **kwargs):
        deprecated_args = dict(
            feedforward_channels='feedforward_channels',
            ffn_dropout='ffn_drop',
            ffn_num_fcs='num_fcs')
        for ori_name, new_name in deprecated_args.items():
            if ori_name in kwargs:
                warnings.warn(
                    f'The arguments `{ori_name}` in BaseTransformerLayer '
                    f'has been deprecated, now you should set `{new_name}` '
                    f'and other FFN related arguments '
                    f'to a dict named `ffn_cfgs`. ')
                ffn_cfgs[new_name] = kwargs[ori_name]

        super().__init__(init_cfg)

        self.batch_first = batch_first

        num_attn = operation_order.count('self_attn') + operation_order.count(
            'cross_attn')
        if isinstance(attn_cfgs, dict):
            attn_cfgs = [copy.deepcopy(attn_cfgs) for _ in range(num_attn)]
        else:
            assert num_attn == len(attn_cfgs), f'The length ' \
                f'of attn_cfg {num_attn} is ' \
                f'not consistent with the number of attention' \
                f'in operation_order {operation_order}.'

        self.num_attn = num_attn
        self.operation_order = operation_order
        self.norm_cfg = norm_cfg
        self.pre_norm = operation_order[0] == 'norm'
        self.attentions = ModuleList()

        index = 0
        for operation_name in operation_order:
            if operation_name in ['self_attn', 'cross_attn']:
                if 'batch_first' in attn_cfgs[index]:
                    assert self.batch_first == attn_cfgs[index]['batch_first']
                else:
                    attn_cfgs[index]['batch_first'] = self.batch_first
                attention = build_attention(attn_cfgs[index])
                # Some custom attentions used as `self_attn`
                # or `cross_attn` can have different behavior.
                attention.operation_name = operation_name
                self.attentions.append(attention)
                index += 1

        self.embed_dims = self.attentions[0].embed_dims

        self.ffns = ModuleList()
        num_ffns = operation_order.count('ffn')
        if isinstance(ffn_cfgs, dict):
            ffn_cfgs = ConfigDict(ffn_cfgs)
        if isinstance(ffn_cfgs, dict):
            ffn_cfgs = [copy.deepcopy(ffn_cfgs) for _ in range(num_ffns)]
        assert len(ffn_cfgs) == num_ffns
        for ffn_index in range(num_ffns):
            if 'embed_dims' not in ffn_cfgs[ffn_index]:
                ffn_cfgs[ffn_index]['embed_dims'] = self.embed_dims
            else:
                assert ffn_cfgs[ffn_index]['embed_dims'] == self.embed_dims

            self.ffns.append(build_feedforward_network(ffn_cfgs[ffn_index]))

        self.norms = ModuleList()
        num_norms = operation_order.count('norm')
        for _ in range(num_norms):
            self.norms.append(build_norm_layer(norm_cfg, self.embed_dims)[1])

    def forward(self,
                query,
                key=None,
                value=None,
                tpv_pos=None,
                ref_2d=None,
                tpv_h=None,
                tpv_w=None,
                tpv_z=None,
                reference_points_cams=None,
                tpv_masks=None,
                spatial_shapes=None,
                level_start_index=None,
                **kwargs):
        """
        **kwargs contains some specific arguments of attentions.

        Args:
            query (Tensor): The input query with shape
                [num_queries, bs, embed_dims] if
                self.batch_first is False, else
                [bs, num_queries embed_dims].
            key (Tensor): The key tensor with shape [num_keys, bs,
                embed_dims] if self.batch_first is False, else
                [bs, num_keys, embed_dims] .
            value (Tensor): The value tensor with same shape as `key`.
            tpv_pos (Tensor): The positional encoding for self attn.
        Returns:
            Tensor: forwarded results with shape
                [[bs, num_queries, embed_dims] * 3] for 3 tpv planes.
        """

        norm_index = 0
        attn_index = 0
        ffn_index = 0
        if self.operation_order[0] == 'cross_attn':
            query = torch.cat(query, dim=1)
        identity = query

        for layer in self.operation_order:
            # cross view hybrid-attention
            if layer == 'self_attn':
                ss = torch.tensor(
                    [[tpv_h, tpv_w], [tpv_z, tpv_h], [tpv_w, tpv_z]],
                    device=query[0].device)
                lsi = torch.tensor(
                    [0, tpv_h * tpv_w, tpv_h * tpv_w + tpv_z * tpv_h],
                    device=query[0].device)

                if not isinstance(query, (list, tuple)):
                    query = torch.split(
                        query, [tpv_h * tpv_w, tpv_z * tpv_h, tpv_w * tpv_z],
                        dim=1)

                query = self.attentions[attn_index](
                    query,
                    identity if self.pre_norm else None,
                    query_pos=tpv_pos,
                    reference_points=ref_2d,
                    spatial_shapes=ss,
                    level_start_index=lsi,
                    **kwargs)
                attn_index += 1
                query = torch.cat(query, dim=1)
                identity = query

            elif layer == 'norm':
                query = self.norms[norm_index](query)
                norm_index += 1

            # image cross attention
            elif layer == 'cross_attn':
                query = self.attentions[attn_index](
                    query,
                    key,
                    value,
                    identity if self.pre_norm else None,
                    reference_points_cams=reference_points_cams,
                    tpv_masks=tpv_masks,
                    spatial_shapes=spatial_shapes,
                    level_start_index=level_start_index,
                    **kwargs)
                attn_index += 1
                identity = query

            elif layer == 'ffn':
                query = self.ffns[ffn_index](
                    query, identity if self.pre_norm else None)
                ffn_index += 1
        query = torch.split(
            query, [tpv_h * tpv_w, tpv_z * tpv_h, tpv_w * tpv_z], dim=1)
        return query