File size: 3,044 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase

import pytest
import torch

from mmdet3d import *  # noqa
from mmdet3d.models.dense_heads import FCAF3DHead
from mmdet3d.testing import create_detector_inputs


class TestFCAF3DHead(TestCase):

    def test_fcaf3d_head_loss(self):
        """Test fcaf3d head loss when truth is empty and non-empty."""
        if not torch.cuda.is_available():
            pytest.skip('test requires GPU and torch+cuda')

        try:
            import MinkowskiEngine as ME
        except ImportError:
            pytest.skip('test requires MinkowskiEngine installation')

        # build head
        fcaf3d_head = FCAF3DHead(
            in_channels=(64, 128, 256, 512),
            out_channels=128,
            voxel_size=1.,
            pts_prune_threshold=1000,
            pts_assign_threshold=27,
            pts_center_threshold=18,
            num_classes=18,
            num_reg_outs=6,
            test_cfg=dict(nms_pre=1000, iou_thr=.5, score_thr=.01),
            center_loss=dict(type='mmdet.CrossEntropyLoss', use_sigmoid=True),
            bbox_loss=dict(type='AxisAlignedIoULoss'),
            cls_loss=dict(type='mmdet.FocalLoss'),
        )
        fcaf3d_head = fcaf3d_head.cuda()

        # fake input of head
        coordinates, features = [torch.randn(500, 3).cuda() * 100
                                 ], [torch.randn(500, 3).cuda()]
        tensor_coordinates, tensor_features = ME.utils.sparse_collate(
            coordinates, features)
        x = ME.SparseTensor(
            features=tensor_features, coordinates=tensor_coordinates)
        # backbone
        conv1 = ME.MinkowskiConvolution(
            3, 64, kernel_size=3, stride=2, dimension=3).cuda()
        conv2 = ME.MinkowskiConvolution(
            64, 128, kernel_size=3, stride=2, dimension=3).cuda()
        conv3 = ME.MinkowskiConvolution(
            128, 256, kernel_size=3, stride=2, dimension=3).cuda()
        conv4 = ME.MinkowskiConvolution(
            256, 512, kernel_size=3, stride=2, dimension=3).cuda()

        # backbone outputs of 4 levels
        x1 = conv1(x)
        x2 = conv2(x1)
        x3 = conv3(x2)
        x4 = conv4(x3)
        x = (x1, x2, x3, x4)

        # fake annotation
        packed_inputs = create_detector_inputs(
            with_points=False,
            with_img=False,
            num_gt_instance=3,
            num_classes=1,
            points_feat_dim=6,
            gt_bboxes_dim=6)
        data_samples = [
            sample.cuda() for sample in packed_inputs['data_samples']
        ]

        gt_losses = fcaf3d_head.loss(x, data_samples)
        print(gt_losses)
        self.assertGreaterEqual(gt_losses['cls_loss'], 0,
                                'cls loss should be non-zero')
        self.assertGreaterEqual(gt_losses['bbox_loss'], 0,
                                'box loss should be non-zero')
        self.assertGreaterEqual(gt_losses['center_loss'], 0,
                                'dir loss should be none-zero')