|
_base_ = ['./nerfdet_res50_2x_low_res_depth.py'] |
|
|
|
model = dict(depth_supervise=False) |
|
|
|
dataset_type = 'MultiViewScanNetDataset' |
|
data_root = 'data/scannet/' |
|
class_names = [ |
|
'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', |
|
'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', |
|
'toilet', 'sink', 'bathtub', 'garbagebin' |
|
] |
|
metainfo = dict(CLASSES=class_names) |
|
file_client_args = dict(backend='disk') |
|
|
|
input_modality = dict(use_depth=False) |
|
backend_args = None |
|
|
|
train_collect_keys = [ |
|
'img', 'gt_bboxes_3d', 'gt_labels_3d', 'lightpos', 'nerf_sizes', 'raydirs', |
|
'gt_images', 'gt_depths', 'denorm_images' |
|
] |
|
|
|
test_collect_keys = [ |
|
'img', |
|
'lightpos', |
|
'nerf_sizes', |
|
'raydirs', |
|
'gt_images', |
|
'gt_depths', |
|
'denorm_images', |
|
] |
|
|
|
train_pipeline = [ |
|
dict(type='LoadAnnotations3D'), |
|
dict( |
|
type='MultiViewPipeline', |
|
n_images=50, |
|
transforms=[ |
|
dict(type='LoadImageFromFile', file_client_args=file_client_args), |
|
dict(type='Resize', scale=(320, 240), keep_ratio=True), |
|
], |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
margin=10, |
|
depth_range=[0.5, 5.5], |
|
loading='random', |
|
nerf_target_views=10), |
|
dict(type='RandomShiftOrigin', std=(.7, .7, .0)), |
|
dict(type='PackNeRFDetInputs', keys=train_collect_keys) |
|
] |
|
|
|
test_pipeline = [ |
|
dict(type='LoadAnnotations3D'), |
|
dict( |
|
type='MultiViewPipeline', |
|
n_images=101, |
|
transforms=[ |
|
dict(type='LoadImageFromFile', file_client_args=file_client_args), |
|
dict(type='Resize', scale=(320, 240), keep_ratio=True), |
|
], |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
margin=10, |
|
depth_range=[0.5, 5.5], |
|
loading='random', |
|
nerf_target_views=1), |
|
dict(type='PackNeRFDetInputs', keys=test_collect_keys) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=6, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_train_new.pkl', |
|
pipeline=train_pipeline, |
|
modality=input_modality, |
|
test_mode=False, |
|
filter_empty_gt=True, |
|
box_type_3d='Depth', |
|
metainfo=metainfo))) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_val_new.pkl', |
|
pipeline=test_pipeline, |
|
modality=input_modality, |
|
test_mode=True, |
|
filter_empty_gt=True, |
|
box_type_3d='Depth', |
|
metainfo=metainfo)) |
|
test_dataloader = val_dataloader |
|
|