|
|
|
import numpy as np |
|
from mmcv.transforms.base import BaseTransform |
|
from mmengine.registry import TRANSFORMS |
|
from mmengine.structures import InstanceData |
|
|
|
from mmdet3d.datasets import NuScenesDataset |
|
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes |
|
|
|
|
|
def _generate_nus_dataset_config(): |
|
data_root = 'tests/data/nuscenes' |
|
ann_file = 'nus_info.pkl' |
|
classes = [ |
|
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', |
|
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' |
|
] |
|
if 'Identity' not in TRANSFORMS: |
|
|
|
@TRANSFORMS.register_module() |
|
class Identity(BaseTransform): |
|
|
|
def transform(self, info): |
|
packed_input = dict(data_samples=Det3DDataSample()) |
|
if 'ann_info' in info: |
|
packed_input[ |
|
'data_samples'].gt_instances_3d = InstanceData() |
|
packed_input[ |
|
'data_samples'].gt_instances_3d.labels_3d = info[ |
|
'ann_info']['gt_labels_3d'] |
|
return packed_input |
|
|
|
pipeline = [ |
|
dict(type='Identity'), |
|
] |
|
modality = dict(use_lidar=True, use_camera=True) |
|
data_prefix = dict( |
|
pts='samples/LIDAR_TOP', |
|
img='samples/CAM_BACK_LEFT', |
|
sweeps='sweeps/LIDAR_TOP') |
|
return data_root, ann_file, classes, data_prefix, pipeline, modality |
|
|
|
|
|
def test_getitem(): |
|
np.random.seed(0) |
|
data_root, ann_file, classes, data_prefix, pipeline, modality = \ |
|
_generate_nus_dataset_config() |
|
|
|
nus_dataset = NuScenesDataset( |
|
data_root=data_root, |
|
ann_file=ann_file, |
|
data_prefix=data_prefix, |
|
pipeline=pipeline, |
|
metainfo=dict(classes=classes), |
|
modality=modality) |
|
|
|
nus_dataset.prepare_data(0) |
|
input_dict = nus_dataset.get_data_info(0) |
|
|
|
assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path'] |
|
assert data_root in input_dict['lidar_points']['lidar_path'] |
|
|
|
for cam_id, img_info in input_dict['images'].items(): |
|
if 'img_path' in img_info: |
|
assert data_prefix['img'] in img_info['img_path'] |
|
assert data_root in img_info['img_path'] |
|
|
|
ann_info = nus_dataset.parse_ann_info(input_dict) |
|
|
|
|
|
assert 'gt_labels_3d' in ann_info |
|
assert ann_info['gt_labels_3d'].dtype == np.int64 |
|
assert len(ann_info['gt_labels_3d']) == 37 |
|
|
|
assert 'gt_bboxes_3d' in ann_info |
|
assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes) |
|
|
|
assert len(nus_dataset.metainfo['classes']) == 10 |
|
|
|
assert input_dict['token'] == 'fd8420396768425eabec9bdddf7e64b6' |
|
assert input_dict['timestamp'] == 1533201470.448696 |
|
|