mm3dtest / tests /test_datasets /test_waymo_dataset.py
giantmonkeyTC
2344
34d1f8b
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.transforms.base import BaseTransform
from mmengine.registry import TRANSFORMS
from mmengine.structures import InstanceData
from mmdet3d.datasets import WaymoDataset
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes
def _generate_waymo_dataset_config():
data_root = 'tests/data/waymo/kitti_format'
ann_file = 'waymo_infos_train.pkl'
classes = ['Car', 'Pedestrian', 'Cyclist']
# wait for pipline refactor
if 'Identity' not in TRANSFORMS:
@TRANSFORMS.register_module()
class Identity(BaseTransform):
def transform(self, info):
if 'ann_info' in info:
info['gt_labels_3d'] = info['ann_info']['gt_labels_3d']
data_sample = Det3DDataSample()
gt_instances_3d = InstanceData()
gt_instances_3d.labels_3d = info['gt_labels_3d']
data_sample.gt_instances_3d = gt_instances_3d
info['data_samples'] = data_sample
return info
pipeline = [
dict(type='Identity'),
]
modality = dict(use_lidar=True, use_camera=True)
data_prefix = data_prefix = dict(
pts='training/velodyne', CAM_FRONT='training/image_0')
return data_root, ann_file, classes, data_prefix, pipeline, modality
def test_getitem():
data_root, ann_file, classes, data_prefix, \
pipeline, modality, = _generate_waymo_dataset_config()
waymo_dataset = WaymoDataset(
data_root,
ann_file,
data_prefix=data_prefix,
pipeline=pipeline,
metainfo=dict(classes=classes),
modality=modality)
waymo_dataset.prepare_data(0)
input_dict = waymo_dataset.get_data_info(0)
waymo_dataset[0]
# assert the the path should contains data_prefix and data_root
assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path']
assert data_root in input_dict['lidar_points']['lidar_path']
for cam_id, img_info in input_dict['images'].items():
if 'img_path' in img_info:
assert data_prefix['CAM_FRONT'] in img_info['img_path']
assert data_root in img_info['img_path']
ann_info = waymo_dataset.parse_ann_info(input_dict)
# only one instance
assert 'gt_labels_3d' in ann_info
assert ann_info['gt_labels_3d'].dtype == np.int64
assert 'gt_bboxes_3d' in ann_info
assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes)
assert torch.allclose(ann_info['gt_bboxes_3d'].tensor.sum(),
torch.tensor(43.3103))
assert 'centers_2d' in ann_info
assert ann_info['centers_2d'].dtype == np.float32
assert 'depths' in ann_info
assert ann_info['depths'].dtype == np.float32