|
|
|
from unittest import TestCase |
|
|
|
import torch |
|
|
|
from mmdet3d.models.decode_heads import DGCNNHead |
|
from mmdet3d.structures import Det3DDataSample, PointData |
|
|
|
|
|
class TestDGCNNHead(TestCase): |
|
|
|
def test_dgcnn_head_loss(self): |
|
"""Tests DGCNN head loss.""" |
|
|
|
dgcnn_head = DGCNNHead( |
|
fp_channels=(1024, 512), |
|
channels=256, |
|
num_classes=13, |
|
dropout_ratio=0.5, |
|
conv_cfg=dict(type='Conv1d'), |
|
norm_cfg=dict(type='BN1d'), |
|
act_cfg=dict(type='LeakyReLU', negative_slope=0.2), |
|
loss_decode=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=False, |
|
class_weight=None, |
|
loss_weight=1.0), |
|
ignore_index=13) |
|
|
|
|
|
fa_points = torch.rand(1, 4096, 1024).float() |
|
feat_dict = dict(fa_points=fa_points) |
|
|
|
|
|
seg_logits = dgcnn_head.forward(feat_dict) |
|
|
|
self.assertEqual(seg_logits.shape, torch.Size([1, 13, 4096])) |
|
|
|
|
|
|
|
pts_semantic_mask = torch.randint(0, 13, (4096, )).long() |
|
gt_pts_seg = PointData(pts_semantic_mask=pts_semantic_mask) |
|
|
|
datasample = Det3DDataSample() |
|
datasample.gt_pts_seg = gt_pts_seg |
|
|
|
gt_losses = dgcnn_head.loss_by_feat(seg_logits, [datasample]) |
|
|
|
gt_sem_seg_loss = gt_losses['loss_sem_seg'].item() |
|
|
|
self.assertGreater(gt_sem_seg_loss, 0, |
|
'semantic seg loss should be positive') |
|
|