giantmonkeyTC
2344
34d1f8b
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestSSN(unittest.TestCase):
def test_ssn(self):
import mmdet3d.models
assert hasattr(mmdet3d.models.dense_heads, 'ShapeAwareHead')
DefaultScope.get_instance('test_ssn', scope_name='mmdet3d')
setup_seed(0)
ssn_cfg = get_detector_cfg(
'ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py')
ssn_cfg.pts_voxel_encoder.feat_channels = [1, 1]
ssn_cfg.pts_middle_encoder.in_channels = 1
ssn_cfg.pts_backbone.in_channels = 1
ssn_cfg.pts_backbone.out_channels = [1, 1, 1]
ssn_cfg.pts_neck.in_channels = [1, 1, 1]
ssn_cfg.pts_neck.out_channels = [1, 1, 1]
ssn_cfg.pts_bbox_head.in_channels = 3
ssn_cfg.pts_bbox_head.feat_channels = 1
model = MODELS.build(ssn_cfg)
num_gt_instance = 50
packed_inputs = create_detector_inputs(
num_gt_instance=num_gt_instance, gt_bboxes_dim=9)
# TODO: Support aug_test
# aug_data = [
# create_detector_inputs(
# num_gt_instance=num_gt_instance, gt_bboxes_dim=9),
# create_detector_inputs(
# num_gt_instance=num_gt_instance + 1, gt_bboxes_dim=9)
# ]
# test_aug_test
# metainfo = {
# 'pcd_scale_factor': 1,
# 'pcd_horizontal_flip': 1,
# 'pcd_vertical_flip': 1,
# 'box_type_3d': LiDARInstance3DBoxes
# }
# for item in aug_data:
# item['data_sample'].set_metainfo(metainfo)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# TODO: Support aug_test
# batch_inputs, data_samples = model.data_preprocessor(
# aug_data, True)
# aug_results = model.forward(
# batch_inputs, data_samples, mode='predict')
# self.assertEqual(len(results), len(data))
# self.assertIn('bboxes_3d', aug_results[0].pred_instances_3d)
# self.assertIn('scores_3d', aug_results[0].pred_instances_3d)
# self.assertIn('labels_3d', aug_results[0].pred_instances_3d)
# self.assertIn('bboxes_3d', aug_results[1].pred_instances_3d)
# self.assertIn('scores_3d', aug_results[1].pred_instances_3d)
# self.assertIn('labels_3d', aug_results[1].pred_instances_3d)
losses = model.forward(**data, mode='loss')
self.assertGreaterEqual(losses['loss_cls'][0], 0)
self.assertGreaterEqual(losses['loss_bbox'][0], 0)
self.assertGreaterEqual(losses['loss_dir'][0], 0)