giantmonkeyTC
2344
34d1f8b
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestGroupfree3d(unittest.TestCase):
def test_groupfree3d(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'GroupFree3DNet')
DefaultScope.get_instance('test_groupfree3d', scope_name='mmdet3d')
setup_seed(0)
voxel_net_cfg = get_detector_cfg(
'groupfree3d/groupfree3d_head-L6-O256_4xb8_scannet-seg.py')
model = MODELS.build(voxel_net_cfg)
num_gt_instance = 5
packed_inputs = create_detector_inputs(
num_gt_instance=num_gt_instance,
points_feat_dim=3,
with_pts_semantic_mask=True,
with_pts_instance_mask=True)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
torch.cuda.empty_cache()
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
self.assertGreater(losses['sampling_objectness_loss'], 0)
self.assertGreater(losses['proposal.objectness_loss'], 0)
self.assertGreater(losses['s0.objectness_loss'], 0)
self.assertGreater(losses['s1.size_res_loss'], 0)
self.assertGreater(losses['s4.size_class_loss'], 0)