giantmonkeyTC
2344
34d1f8b
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestImVoxelNet(unittest.TestCase):
def test_imvoxelnet_kitti(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'ImVoxelNet')
DefaultScope.get_instance(
'test_imvoxelnet_kitti', scope_name='mmdet3d')
setup_seed(0)
imvoxel_net_cfg = get_detector_cfg(
'imvoxelnet/imvoxelnet_8xb4_kitti-3d-car.py')
model = MODELS.build(imvoxel_net_cfg)
num_gt_instance = 1
packed_inputs = create_detector_inputs(
with_points=False,
with_img=True,
img_size=(128, 128),
num_gt_instance=num_gt_instance,
with_pts_semantic_mask=False,
with_pts_instance_mask=False)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
torch.cuda.empty_cache()
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
self.assertGreaterEqual(losses['loss_cls'][0], 0)
self.assertGreaterEqual(losses['loss_bbox'][0], 0)
self.assertGreaterEqual(losses['loss_dir'][0], 0)
def test_imvoxelnet_sunrgbd(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'ImVoxelNet')
DefaultScope.get_instance(
'test_imvoxelnet_sunrgbd', scope_name='mmdet3d')
setup_seed(0)
imvoxel_net_cfg = get_detector_cfg(
'imvoxelnet/imvoxelnet_2xb4_sunrgbd-3d-10class.py')
model = MODELS.build(imvoxel_net_cfg)
num_gt_instance = 1
packed_inputs = create_detector_inputs(
with_points=False,
with_img=True,
img_size=(128, 128),
num_gt_instance=num_gt_instance,
with_pts_semantic_mask=False,
with_pts_instance_mask=False)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
torch.cuda.empty_cache()
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
self.assertGreaterEqual(losses['center_loss'], 0)
self.assertGreaterEqual(losses['bbox_loss'], 0)
self.assertGreaterEqual(losses['cls_loss'], 0)