|
import unittest |
|
|
|
import torch |
|
from mmengine import DefaultScope |
|
|
|
from mmdet3d.registry import MODELS |
|
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, |
|
setup_seed) |
|
|
|
|
|
class TestMVXNet(unittest.TestCase): |
|
|
|
def test_mvxnet(self): |
|
import mmdet3d.models |
|
|
|
assert hasattr(mmdet3d.models, 'DynamicMVXFasterRCNN') |
|
|
|
setup_seed(0) |
|
DefaultScope.get_instance('test_mvxnet', scope_name='mmdet3d') |
|
mvx_net_cfg = get_detector_cfg( |
|
'mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py' |
|
) |
|
model = MODELS.build(mvx_net_cfg) |
|
num_gt_instance = 1 |
|
packed_inputs = create_detector_inputs( |
|
with_img=False, num_gt_instance=num_gt_instance, points_feat_dim=4) |
|
|
|
if torch.cuda.is_available(): |
|
|
|
model = model.cuda() |
|
|
|
data = model.data_preprocessor(packed_inputs, True) |
|
|
|
with torch.no_grad(): |
|
torch.cuda.empty_cache() |
|
losses = model.forward(**data, mode='loss') |
|
assert losses['loss_cls'][0] >= 0 |
|
assert losses['loss_bbox'][0] >= 0 |
|
assert losses['loss_dir'][0] >= 0 |
|
|
|
with torch.no_grad(): |
|
results = model.forward(**data, mode='predict') |
|
self.assertEqual(len(results), 1) |
|
self.assertIn('bboxes_3d', results[0].pred_instances_3d) |
|
self.assertIn('scores_3d', results[0].pred_instances_3d) |
|
self.assertIn('labels_3d', results[0].pred_instances_3d) |
|
|
|
|