|
import unittest |
|
|
|
import torch |
|
from mmengine import DefaultScope |
|
|
|
from mmdet3d.registry import MODELS |
|
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, |
|
setup_seed) |
|
|
|
|
|
class TestVotenet(unittest.TestCase): |
|
|
|
def test_voxel_net(self): |
|
import mmdet3d.models |
|
|
|
assert hasattr(mmdet3d.models, 'VoteNet') |
|
DefaultScope.get_instance('test_vote_net', scope_name='mmdet3d') |
|
setup_seed(0) |
|
voxel_net_cfg = get_detector_cfg('votenet/votenet_8xb16_sunrgbd-3d.py') |
|
model = MODELS.build(voxel_net_cfg) |
|
num_gt_instance = 50 |
|
packed_inputs = create_detector_inputs(num_gt_instance=num_gt_instance) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
model = model.cuda() |
|
|
|
with torch.no_grad(): |
|
data = model.data_preprocessor(packed_inputs, True) |
|
results = model.forward(**data, mode='predict') |
|
self.assertEqual(len(results), 1) |
|
self.assertIn('bboxes_3d', results[0].pred_instances_3d) |
|
self.assertIn('scores_3d', results[0].pred_instances_3d) |
|
self.assertIn('labels_3d', results[0].pred_instances_3d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
losses = model.forward(**data, mode='loss') |
|
|
|
self.assertGreater(losses['vote_loss'], 0) |
|
self.assertGreater(losses['objectness_loss'], 0) |
|
self.assertGreater(losses['semantic_loss'], 0) |
|
self.assertGreater(losses['dir_res_loss'], 0) |
|
self.assertGreater(losses['size_class_loss'], 0) |
|
self.assertGreater(losses['size_res_loss'], 0) |
|
self.assertGreater(losses['size_res_loss'], 0) |
|
|
|
|
|
|