giantmonkeyTC
2344
34d1f8b
# Copyright (c) OpenMMLab. All rights reserved.
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestVoxelNet(unittest.TestCase):
def test_voxelnet(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'VoxelNet')
DefaultScope.get_instance('test_voxelnet', scope_name='mmdet3d')
setup_seed(0)
pointpillars_cfg = get_detector_cfg(
'pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py')
model = MODELS.build(pointpillars_cfg)
num_gt_instance = 2
packed_inputs = create_detector_inputs(num_gt_instance=num_gt_instance)
# TODO: Support aug_test
# aug_data = [
# create_detector_inputs(num_gt_instance=num_gt_instance),
# create_detector_inputs(num_gt_instance=num_gt_instance + 1)
# ]
# # test_aug_test
# metainfo = {
# 'pcd_scale_factor': 1,
# 'pcd_horizontal_flip': 1,
# 'pcd_vertical_flip': 1,
# 'box_type_3d': LiDARInstance3DBoxes
# }
# for item in aug_data:
# item['data_sample'].set_metainfo(metainfo)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
torch.cuda.empty_cache()
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# TODO: Support aug_test
# batch_inputs, data_samples = model.data_preprocessor(
# aug_data, True)
# aug_results = model.forward(
# batch_inputs, data_samples, mode='predict')
# self.assertEqual(len(results), len(data))
# self.assertIn('bboxes_3d', aug_results[0].pred_instances_3d)
# self.assertIn('scores_3d', aug_results[0].pred_instances_3d)
# self.assertIn('labels_3d', aug_results[0].pred_instances_3d)
# self.assertIn('bboxes_3d', aug_results[1].pred_instances_3d)
# self.assertIn('scores_3d', aug_results[1].pred_instances_3d)
# self.assertIn('labels_3d', aug_results[1].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
torch.cuda.empty_cache()
self.assertGreaterEqual(losses['loss_dir'][0], 0)
self.assertGreaterEqual(losses['loss_bbox'][0], 0)
self.assertGreaterEqual(losses['loss_cls'][0], 0)