import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestCenterPoint(unittest.TestCase): def test_center_point(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'CenterPoint') setup_seed(0) DefaultScope.get_instance('test_center_point', scope_name='mmdet3d') centerpoint_net_cfg = get_detector_cfg( 'centerpoint/centerpoint_voxel01_second_secfpn_8xb4-cyclic-20e_nus-3d.py' # noqa ) model = MODELS.build(centerpoint_net_cfg) num_gt_instance = 50 packed_inputs = create_detector_inputs( with_img=True, num_gt_instance=num_gt_instance, points_feat_dim=5) for sample_id in range(len(packed_inputs['data_samples'])): det_sample = packed_inputs['data_samples'][sample_id] num_instances = len(det_sample.gt_instances_3d.bboxes_3d) bbox_3d_class = det_sample.gt_instances_3d.bboxes_3d.__class__ det_sample.gt_instances_3d.bboxes_3d = bbox_3d_class( torch.rand(num_instances, 9), box_dim=9) if torch.cuda.is_available(): model = model.cuda() # test simple_test data = model.data_preprocessor(packed_inputs, True) with torch.no_grad(): torch.cuda.empty_cache() losses = model.forward(**data, mode='loss') assert losses['task0.loss_heatmap'] >= 0 assert losses['task0.loss_bbox'] >= 0 assert losses['task1.loss_heatmap'] >= 0 assert losses['task1.loss_bbox'] >= 0 assert losses['task2.loss_heatmap'] >= 0 assert losses['task2.loss_bbox'] >= 0 assert losses['task3.loss_heatmap'] >= 0 assert losses['task3.loss_bbox'] >= 0 assert losses['task3.loss_bbox'] >= 0 assert losses['task4.loss_bbox'] >= 0 assert losses['task5.loss_heatmap'] >= 0 assert losses['task5.loss_bbox'] >= 0 with torch.no_grad(): results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # TODO test_aug_test