# Copyright (c) OpenMMLab. All rights reserved. import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestCylinder3D(unittest.TestCase): def test_cylinder3d(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'Cylinder3D') DefaultScope.get_instance('test_cylinder3d', scope_name='mmdet3d') setup_seed(0) cylinder3d_cfg = get_detector_cfg( 'cylinder3d/cylinder3d_4xb4-3x_semantickitti.py') cylinder3d_cfg.decode_head['ignore_index'] = 1 model = MODELS.build(cylinder3d_cfg) num_gt_instance = 3 packed_inputs = create_detector_inputs( num_gt_instance=num_gt_instance, num_classes=1, with_pts_semantic_mask=True) if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) torch.cuda.empty_cache() results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('pts_semantic_mask', results[0].pred_pts_seg) losses = model.forward(**data, mode='loss') self.assertGreater(losses['decode.loss_ce'], 0) self.assertGreater(losses['decode.loss_lovasz'], 0)