import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestH3D(unittest.TestCase): def test_h3dnet(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'H3DNet') DefaultScope.get_instance('test_H3DNet', scope_name='mmdet3d') setup_seed(0) voxel_net_cfg = get_detector_cfg('h3dnet/h3dnet_8xb3_scannet-seg.py') model = MODELS.build(voxel_net_cfg) num_gt_instance = 5 packed_inputs = create_detector_inputs( num_gt_instance=num_gt_instance, points_feat_dim=4, bboxes_3d_type='depth', with_pts_semantic_mask=True, with_pts_instance_mask=True) if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # save the memory with torch.no_grad(): losses = model.forward(**data, mode='loss') self.assertGreater(losses['vote_loss'], 0) self.assertGreater(losses['objectness_loss'], 0) self.assertGreater(losses['center_loss'], 0)