import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestImvoteNet(unittest.TestCase): def test_imvotenet_only_img(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'ImVoteNet') DefaultScope.get_instance('test_imvotenet_img', scope_name='mmdet3d') setup_seed(0) votenet_net_cfg = get_detector_cfg( 'imvotenet/imvotenet_faster-rcnn-r50_fpn_4xb2_sunrgbd-3d.py') model = MODELS.build(votenet_net_cfg) packed_inputs = create_detector_inputs( with_points=False, with_img=True, img_size=128) if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes', results[0].pred_instances) self.assertIn('scores', results[0].pred_instances) self.assertIn('labels', results[0].pred_instances) # save the memory with torch.no_grad(): torch.cuda.empty_cache() losses = model.forward(**data, mode='loss') self.assertGreater(sum(losses['loss_rpn_cls']), 0) self.assertGreater(losses['loss_cls'], 0) self.assertGreater(losses['loss_bbox'], 0) def test_imvotenet(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'ImVoteNet') DefaultScope.get_instance('test_imvotenet', scope_name='mmdet3d') setup_seed(0) votenet_net_cfg = get_detector_cfg( 'imvotenet/imvotenet_stage2_8xb16_sunrgbd-3d.py') model = MODELS.build(votenet_net_cfg) packed_inputs = create_detector_inputs( with_points=True, with_img=True, img_size=128, bboxes_3d_type='depth') if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # save the memory with torch.no_grad(): losses = model.forward(**data, mode='loss') self.assertGreater(losses['vote_loss'], 0) self.assertGreater(losses['objectness_loss'], 0) self.assertGreater(losses['semantic_loss'], 0)