import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestPointRCNN(unittest.TestCase): def test_pointrcnn(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'PointRCNN') DefaultScope.get_instance('test_pointrcnn', scope_name='mmdet3d') setup_seed(0) pointrcnn_cfg = get_detector_cfg( 'point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py') model = MODELS.build(pointrcnn_cfg) num_gt_instance = 2 packed_inputs = create_detector_inputs( num_points=10101, num_gt_instance=num_gt_instance) if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) torch.cuda.empty_cache() results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # save the memory with torch.no_grad(): losses = model.forward(**data, mode='loss') torch.cuda.empty_cache() self.assertGreaterEqual(losses['rpn_bbox_loss'], 0) self.assertGreaterEqual(losses['rpn_semantic_loss'], 0) self.assertGreaterEqual(losses['loss_cls'], 0) self.assertGreaterEqual(losses['loss_bbox'], 0) self.assertGreaterEqual(losses['loss_corner'], 0)