import unittest import torch from mmengine import DefaultScope from mmdet3d.registry import MODELS from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, setup_seed) class TestPVRCNN(unittest.TestCase): def test_pvrcnn(self): import mmdet3d.models assert hasattr(mmdet3d.models, 'PointVoxelRCNN') DefaultScope.get_instance('test_pvrcnn', scope_name='mmdet3d') setup_seed(0) pvrcnn_cfg = get_detector_cfg( 'pv_rcnn/pv_rcnn_8xb2-80e_kitti-3d-3class.py') model = MODELS.build(pvrcnn_cfg) num_gt_instance = 2 packed_inputs = create_detector_inputs(num_gt_instance=num_gt_instance) # TODO: Support aug data test # aug_packed_inputs = [ # create_detector_inputs(num_gt_instance=num_gt_instance), # create_detector_inputs(num_gt_instance=num_gt_instance + 1) # ] # test_aug_test # metainfo = { # 'pcd_scale_factor': 1, # 'pcd_horizontal_flip': 1, # 'pcd_vertical_flip': 1, # 'box_type_3d': LiDARInstance3DBoxes # } # for item in aug_packed_inputs: # for batch_id in len(item['data_samples']): # item['data_samples'][batch_id].set_metainfo(metainfo) if torch.cuda.is_available(): model = model.cuda() # test simple_test with torch.no_grad(): data = model.data_preprocessor(packed_inputs, True) torch.cuda.empty_cache() results = model.forward(**data, mode='predict') self.assertEqual(len(results), 1) self.assertIn('bboxes_3d', results[0].pred_instances_3d) self.assertIn('scores_3d', results[0].pred_instances_3d) self.assertIn('labels_3d', results[0].pred_instances_3d) # save the memory with torch.no_grad(): losses = model.forward(**data, mode='loss') torch.cuda.empty_cache() self.assertGreater(losses['loss_rpn_cls'][0], 0) self.assertGreaterEqual(losses['loss_rpn_bbox'][0], 0) self.assertGreaterEqual(losses['loss_rpn_dir'][0], 0) self.assertGreater(losses['loss_semantic'], 0) self.assertGreaterEqual(losses['loss_bbox'], 0) self.assertGreaterEqual(losses['loss_cls'], 0) self.assertGreaterEqual(losses['loss_corner'], 0)