godmethium commited on
Commit
dec2b40
1 Parent(s): b3a4b98

End of training

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5876
36
+ - Accuracy: 0.85
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9966 | 1.0 | 113 | 1.8989 | 0.55 |
70
+ | 1.2236 | 2.0 | 226 | 1.2805 | 0.6 |
71
+ | 0.8661 | 3.0 | 339 | 0.9010 | 0.74 |
72
+ | 0.6735 | 4.0 | 452 | 0.7560 | 0.78 |
73
+ | 0.466 | 5.0 | 565 | 0.7585 | 0.76 |
74
+ | 0.333 | 6.0 | 678 | 0.6572 | 0.81 |
75
+ | 0.1739 | 7.0 | 791 | 0.6360 | 0.83 |
76
+ | 0.2277 | 8.0 | 904 | 0.5453 | 0.81 |
77
+ | 0.1714 | 9.0 | 1017 | 0.5850 | 0.83 |
78
+ | 0.0892 | 10.0 | 1130 | 0.5876 | 0.85 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.35.2
84
+ - Pytorch 2.1.0+cu121
85
+ - Datasets 2.16.1
86
+ - Tokenizers 0.15.0