gokaygokay commited on
Commit
7d5cd7f
·
verified ·
1 Parent(s): 6525661

Upload vision_encoder.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. vision_encoder.py +138 -0
vision_encoder.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from PIL import Image
4
+ from einops import rearrange
5
+ from torchvision.transforms.v2 import (
6
+ Compose,
7
+ Resize,
8
+ InterpolationMode,
9
+ ToImage,
10
+ ToDtype,
11
+ Normalize,
12
+ )
13
+ import timm
14
+
15
+
16
+ class VisualHolder(nn.Module):
17
+ def __init__(self, model):
18
+ super().__init__()
19
+ self.visual = model
20
+
21
+ def forward(self, x):
22
+ return self.visual(x)
23
+
24
+
25
+ class ModelHolder(nn.Module):
26
+ def __init__(self, model):
27
+ super().__init__()
28
+ self.model = model
29
+
30
+ def forward(self, x):
31
+ return self.model(x)
32
+
33
+
34
+ class LinearPatchEmbedding(nn.Module):
35
+ def __init__(self, conv):
36
+ super().__init__()
37
+ self.linear = nn.Linear(588, 1152)
38
+ self.linear.weight.data = conv.weight.data.view(1152, -1)
39
+ if conv.bias is not None:
40
+ self.linear.bias.data = conv.bias.data
41
+
42
+ def forward(self, x):
43
+ return self.linear(x)
44
+
45
+
46
+ class MLP(nn.Module):
47
+ def __init__(
48
+ self,
49
+ in_features: int,
50
+ hidden_features: int = None,
51
+ out_features: int = None,
52
+ act_layer: nn.Module = nn.GELU,
53
+ ) -> None:
54
+ super().__init__()
55
+ out_features = out_features or in_features
56
+ hidden_features = hidden_features or in_features
57
+ self.fc1 = nn.Linear(in_features, hidden_features)
58
+ self.act = act_layer()
59
+ self.fc2 = nn.Linear(hidden_features, out_features)
60
+
61
+ torch.nn.init.kaiming_normal_(
62
+ self.fc1.weight, mode="fan_in", nonlinearity="relu"
63
+ )
64
+ torch.nn.init.kaiming_normal_(
65
+ self.fc2.weight, mode="fan_in", nonlinearity="relu"
66
+ )
67
+
68
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
69
+ x = self.fc1(x)
70
+ x = self.act(x)
71
+ x = self.fc2(x)
72
+ return x
73
+
74
+
75
+ class VisionProjection(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+
79
+ image_embedding_dim = 1152
80
+ model_dim = 2048
81
+ hidden_dim = model_dim * 4
82
+
83
+ self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)
84
+
85
+ @property
86
+ def device(self):
87
+ return self.mlp.fc1.weight.device
88
+
89
+ def forward(self, x):
90
+ return self.mlp(x)
91
+
92
+
93
+ class VisionEncoder(nn.Module):
94
+ def __init__(self) -> None:
95
+ super().__init__()
96
+
97
+ self.encoder = ModelHolder(
98
+ VisualHolder(timm.create_model("vit_so400m_patch14_siglip_384"))
99
+ )
100
+ self.encoder.model.visual.patch_embed = LinearPatchEmbedding(
101
+ self.encoder.model.visual.patch_embed.proj
102
+ )
103
+ self.encoder.model.visual.attn_pool = nn.Identity()
104
+
105
+ self.projection = VisionProjection()
106
+
107
+ self.preprocess = Compose(
108
+ [
109
+ Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
110
+ ToImage(),
111
+ ToDtype(torch.float32, scale=True),
112
+ Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
113
+ ]
114
+ )
115
+
116
+ @property
117
+ def device(self):
118
+ return self.projection.mlp.fc1.weight.device
119
+
120
+ @property
121
+ def dtype(self):
122
+ return self.projection.mlp.fc1.weight.dtype
123
+
124
+ def __call__(self, images) -> torch.Tensor:
125
+ if not isinstance(images, list):
126
+ images = [images]
127
+
128
+ with torch.no_grad():
129
+ x = torch.stack(
130
+ [self.preprocess(image.convert("RGB")) for image in images]
131
+ ).to(self.device, dtype=self.dtype)
132
+
133
+ x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)
134
+
135
+ x = self.encoder(x)
136
+ x = self.projection(x)
137
+
138
+ return x