File size: 1,379 Bytes
0e1f234
 
 
 
 
 
 
 
 
 
ff2c266
0e1f234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738491f
0e1f234
 
 
 
738491f
0e1f234
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: apache-2.0
datasets:
- google/docci
language:
- en
library_name: transformers
pipeline_tag: image-text-to-text
---

Fine tuned version of [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224-jax) model on [google/docci](https://huggingface.co/datasets/google/docci) dataset with middle size captions between 200 and 350 characters. This model has less halucinations.

```
pip install git+https://github.com/huggingface/transformers
```

```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
import torch

model_id = "gokaygokay/paligemma-rich-captions"

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)

model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to('cuda').eval()
processor = AutoProcessor.from_pretrained(model_id)

## prefix
prompt = "caption en"
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda')
input_len = model_inputs["input_ids"].shape[-1]

with torch.inference_mode():
    generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False)
    generation = generation[0][input_len:]
    decoded = processor.decode(generation, skip_special_tokens=True)
    print(decoded)
```