File size: 1,379 Bytes
0e1f234 ff2c266 0e1f234 738491f 0e1f234 738491f 0e1f234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
datasets:
- google/docci
language:
- en
library_name: transformers
pipeline_tag: image-text-to-text
---
Fine tuned version of [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224-jax) model on [google/docci](https://huggingface.co/datasets/google/docci) dataset with middle size captions between 200 and 350 characters. This model has less halucinations.
```
pip install git+https://github.com/huggingface/transformers
```
```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import requests
import torch
model_id = "gokaygokay/paligemma-rich-captions"
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to('cuda').eval()
processor = AutoProcessor.from_pretrained(model_id)
## prefix
prompt = "caption en"
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda')
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
``` |