File size: 1,758 Bytes
4d62681
 
309674c
 
 
 
 
 
 
4d62681
 
309674c
4d62681
309674c
4d62681
 
309674c
 
4d62681
309674c
c6dea39
309674c
4d62681
309674c
 
 
 
 
4d62681
309674c
 
4d62681
309674c
 
4d62681
309674c
4d62681
309674c
 
 
 
 
 
 
 
4d62681
309674c
 
 
 
 
 
4d62681
309674c
 
4d62681
309674c
 
4d62681
309674c
4d62681
 
2aacf31
4d62681
309674c
2aacf31
4d62681
4b71d3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
tags:
- art
datasets:
- gokaygokay/prompt_description_stable_diffusion_3k
language:
- en
pipeline_tag: text2text-generation
---

# Model Card

Fine tuned EleutherAI/pythia-410m using gokaygokay/prompt_description_stable_diffusion_3k dataset.

### Direct Use
```
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "gokaygokay/phytia410m_desctoprompt"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Your description
test_description = """
View to a rustic terrace filled with pots with autumn flowers and a vine full of red leaves and bunches of grapes. 
in the foreground a wooden table with a copious breakfast, coffee, bowls, vases and plates with fruits, nuts, chestnuts, hazelnuts, breads and buns.
"""

prompt_template = """### Description:
{description}

### Prompt:
"""

text = prompt_template.format(description=test_description)

def inference(text, model, tokenizer, max_input_tokens=1000, max_output_tokens=200):
  # Tokenize
    input_ids = tokenizer.encode(
          text,
          return_tensors="pt",
          truncation=True,
          max_length=max_input_tokens
    )

    # Generate
    device = model.device
    generated_tokens_with_prompt = model.generate(
    input_ids=input_ids.to(device),
    max_length=max_output_tokens,
    )

    # Decode
    generated_text_with_prompt = tokenizer.batch_decode(generated_tokens_with_prompt, skip_special_tokens=True)

    # Strip the prompt
    generated_text_answer = generated_text_with_prompt[0][len(text):]

    return generated_text_answer


print("Description input (test):", text)

print("Finetuned model's prompt: ")
print(inference(text, model, tokenizer))

```