--- library_name: transformers tags: - art datasets: - gokaygokay/prompt_description_stable_diffusion_3k language: - en pipeline_tag: text2text-generation --- ``` !pip install -q -U transformers trl accelerate peft bitsandbytes from transformers import AutoModelForCausalLM, GenerationConfig, AutoTokenizer import torch import os model_id = "gokaygokay/tiny_llama_chat_description_to_prompt" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, load_in_8bit=False, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token def generate_response(user_input): prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n<|im_start|>assistant:" inputs = tokenizer([prompt], return_tensors="pt") generation_config = GenerationConfig(penalty_alpha=0.6,do_sample = True, top_k=5,temperature=0.9,repetition_penalty=1.2, max_new_tokens=100,pad_token_id=tokenizer.eos_token_id ) inputs = tokenizer(prompt, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, generation_config=generation_config) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```