--- base_model: gokuls/HBERTv1_L12_H768_A12_ffn_1 tags: - generated_from_trainer datasets: - gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - accuracy model-index: - name: HBERTv1_48_L12_H768_A12_ffn_1_KD results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokuls/wiki_book_corpus_complete_processed_bert_dataset type: gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - name: Accuracy type: accuracy value: 0.4616582527830643 --- # HBERTv1_48_L12_H768_A12_ffn_1_KD This model is a fine-tuned version of [gokuls/HBERTv1_L12_H768_A12_ffn_1](https://huggingface.co/gokuls/HBERTv1_L12_H768_A12_ffn_1) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set: - Loss: 132.3779 - Accuracy: 0.4617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.15.0 - Tokenizers 0.15.0