--- base_model: gokuls/HBERTv1_48_L2_H128_A2 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: HBERTv1_48_L2_H128_A2_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.8535 --- # HBERTv1_48_L2_H128_A2_emotion This model is a fine-tuned version of [gokuls/HBERTv1_48_L2_H128_A2](https://huggingface.co/gokuls/HBERTv1_48_L2_H128_A2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4479 - Accuracy: 0.8535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4451 | 1.0 | 250 | 1.1825 | 0.57 | | 1.0143 | 2.0 | 500 | 0.8357 | 0.7255 | | 0.7131 | 3.0 | 750 | 0.6324 | 0.7965 | | 0.5482 | 4.0 | 1000 | 0.5475 | 0.838 | | 0.4565 | 5.0 | 1250 | 0.5072 | 0.8465 | | 0.3866 | 6.0 | 1500 | 0.4875 | 0.8385 | | 0.3522 | 7.0 | 1750 | 0.4569 | 0.8505 | | 0.3273 | 8.0 | 2000 | 0.4479 | 0.8535 | | 0.3032 | 9.0 | 2250 | 0.4379 | 0.8535 | | 0.2909 | 10.0 | 2500 | 0.4368 | 0.8515 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0