--- base_model: gokuls/HBERTv1_48_L4_H128_A2 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L4_H128_A2_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.7584849975405804 --- # HBERTv1_48_L4_H128_A2_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L4_H128_A2](https://huggingface.co/gokuls/HBERTv1_48_L4_H128_A2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.9771 - Accuracy: 0.7585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7047 | 1.0 | 180 | 3.1694 | 0.2671 | | 2.853 | 2.0 | 360 | 2.4727 | 0.3728 | | 2.2985 | 3.0 | 540 | 2.0198 | 0.5037 | | 1.8951 | 4.0 | 720 | 1.6943 | 0.5903 | | 1.6002 | 5.0 | 900 | 1.4773 | 0.6385 | | 1.3858 | 6.0 | 1080 | 1.3326 | 0.6606 | | 1.2238 | 7.0 | 1260 | 1.2261 | 0.7044 | | 1.1074 | 8.0 | 1440 | 1.1328 | 0.7270 | | 1.0097 | 9.0 | 1620 | 1.0892 | 0.7364 | | 0.9282 | 10.0 | 1800 | 1.0557 | 0.7408 | | 0.8735 | 11.0 | 1980 | 1.0236 | 0.7457 | | 0.8285 | 12.0 | 2160 | 1.0049 | 0.7555 | | 0.7842 | 13.0 | 2340 | 0.9897 | 0.7550 | | 0.7669 | 14.0 | 2520 | 0.9835 | 0.7555 | | 0.7482 | 15.0 | 2700 | 0.9771 | 0.7585 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0