--- base_model: gokuls/HBERTv1_48_L4_H256_A4 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L4_H256_A4_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8401377274963109 --- # HBERTv1_48_L4_H256_A4_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L4_H256_A4](https://huggingface.co/gokuls/HBERTv1_48_L4_H256_A4) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.7151 - Accuracy: 0.8401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.206 | 1.0 | 180 | 2.2341 | 0.4579 | | 1.8169 | 2.0 | 360 | 1.3642 | 0.6749 | | 1.1697 | 3.0 | 540 | 1.0289 | 0.7423 | | 0.8587 | 4.0 | 720 | 0.8583 | 0.7821 | | 0.6723 | 5.0 | 900 | 0.8038 | 0.8008 | | 0.5497 | 6.0 | 1080 | 0.7459 | 0.8101 | | 0.4755 | 7.0 | 1260 | 0.7419 | 0.8146 | | 0.3992 | 8.0 | 1440 | 0.7095 | 0.8278 | | 0.336 | 9.0 | 1620 | 0.7278 | 0.8288 | | 0.2956 | 10.0 | 1800 | 0.7151 | 0.8401 | | 0.2593 | 11.0 | 1980 | 0.7130 | 0.8347 | | 0.2301 | 12.0 | 2160 | 0.7215 | 0.8367 | | 0.2038 | 13.0 | 2340 | 0.7191 | 0.8372 | | 0.1881 | 14.0 | 2520 | 0.7273 | 0.8362 | | 0.1766 | 15.0 | 2700 | 0.7256 | 0.8401 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0