File size: 2,942 Bytes
f7604d3 908f992 f7604d3 908f992 f7604d3 908f992 f7604d3 908f992 f7604d3 908f992 f7604d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- en
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: hBERTv1_new_pretrain_48_ver2_stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
config: stsb
split: validation
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.385826216097769
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv1_new_pretrain_48_ver2_stsb
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0507
- Pearson: 0.3913
- Spearmanr: 0.3858
- Combined Score: 0.3885
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
| 2.2439 | 1.0 | 90 | 2.2582 | 0.1118 | 0.1205 | 0.1162 |
| 1.9712 | 2.0 | 180 | 2.5514 | 0.2121 | 0.2109 | 0.2115 |
| 1.6254 | 3.0 | 270 | 2.6339 | 0.2885 | 0.2887 | 0.2886 |
| 1.2292 | 4.0 | 360 | 2.1543 | 0.3642 | 0.3666 | 0.3654 |
| 0.9444 | 5.0 | 450 | 2.6438 | 0.3529 | 0.3577 | 0.3553 |
| 0.7567 | 6.0 | 540 | 2.3755 | 0.3820 | 0.3872 | 0.3846 |
| 0.5838 | 7.0 | 630 | 2.0507 | 0.3913 | 0.3858 | 0.3885 |
| 0.5032 | 8.0 | 720 | 2.5227 | 0.4037 | 0.4071 | 0.4054 |
| 0.4112 | 9.0 | 810 | 2.1436 | 0.4072 | 0.3988 | 0.4030 |
| 0.3551 | 10.0 | 900 | 2.1501 | 0.4069 | 0.4004 | 0.4037 |
| 0.2961 | 11.0 | 990 | 2.2744 | 0.4137 | 0.4080 | 0.4109 |
| 0.256 | 12.0 | 1080 | 2.3612 | 0.4115 | 0.4038 | 0.4076 |
### Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
|