gokuls's picture
End of training
908f992
metadata
language:
  - en
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - spearmanr
model-index:
  - name: hBERTv1_new_pretrain_48_ver2_stsb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE STSB
          type: glue
          config: stsb
          split: validation
          args: stsb
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.385826216097769

hBERTv1_new_pretrain_48_ver2_stsb

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48 on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0507
  • Pearson: 0.3913
  • Spearmanr: 0.3858
  • Combined Score: 0.3885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
2.2439 1.0 90 2.2582 0.1118 0.1205 0.1162
1.9712 2.0 180 2.5514 0.2121 0.2109 0.2115
1.6254 3.0 270 2.6339 0.2885 0.2887 0.2886
1.2292 4.0 360 2.1543 0.3642 0.3666 0.3654
0.9444 5.0 450 2.6438 0.3529 0.3577 0.3553
0.7567 6.0 540 2.3755 0.3820 0.3872 0.3846
0.5838 7.0 630 2.0507 0.3913 0.3858 0.3885
0.5032 8.0 720 2.5227 0.4037 0.4071 0.4054
0.4112 9.0 810 2.1436 0.4072 0.3988 0.4030
0.3551 10.0 900 2.1501 0.4069 0.4004 0.4037
0.2961 11.0 990 2.2744 0.4137 0.4080 0.4109
0.256 12.0 1080 2.3612 0.4115 0.4038 0.4076

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1