|
{ |
|
"best_metric": 0.6176406741142273, |
|
"best_model_checkpoint": "hBERTv1_new_pretrain_cola/checkpoint-201", |
|
"epoch": 8.0, |
|
"global_step": 536, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"learning_rate": 3.9200000000000004e-05, |
|
"loss": 0.6331, |
|
"step": 67 |
|
}, |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.618148148059845, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8818, |
|
"eval_samples_per_second": 554.271, |
|
"eval_steps_per_second": 4.783, |
|
"step": 67 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"learning_rate": 3.8400000000000005e-05, |
|
"loss": 0.624, |
|
"step": 134 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.620297908782959, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8844, |
|
"eval_samples_per_second": 553.481, |
|
"eval_steps_per_second": 4.776, |
|
"step": 134 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"learning_rate": 3.76e-05, |
|
"loss": 0.6173, |
|
"step": 201 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.6176406741142273, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8882, |
|
"eval_samples_per_second": 552.379, |
|
"eval_steps_per_second": 4.766, |
|
"step": 201 |
|
}, |
|
{ |
|
"epoch": 4.0, |
|
"learning_rate": 3.680000000000001e-05, |
|
"loss": 0.6176, |
|
"step": 268 |
|
}, |
|
{ |
|
"epoch": 4.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.618543267250061, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8866, |
|
"eval_samples_per_second": 552.849, |
|
"eval_steps_per_second": 4.771, |
|
"step": 268 |
|
}, |
|
{ |
|
"epoch": 5.0, |
|
"learning_rate": 3.6e-05, |
|
"loss": 0.6121, |
|
"step": 335 |
|
}, |
|
{ |
|
"epoch": 5.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.6193671822547913, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8856, |
|
"eval_samples_per_second": 553.129, |
|
"eval_steps_per_second": 4.773, |
|
"step": 335 |
|
}, |
|
{ |
|
"epoch": 6.0, |
|
"learning_rate": 3.52e-05, |
|
"loss": 0.6112, |
|
"step": 402 |
|
}, |
|
{ |
|
"epoch": 6.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.6186181902885437, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.885, |
|
"eval_samples_per_second": 553.315, |
|
"eval_steps_per_second": 4.775, |
|
"step": 402 |
|
}, |
|
{ |
|
"epoch": 7.0, |
|
"learning_rate": 3.44e-05, |
|
"loss": 0.6132, |
|
"step": 469 |
|
}, |
|
{ |
|
"epoch": 7.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.626687228679657, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8814, |
|
"eval_samples_per_second": 554.386, |
|
"eval_steps_per_second": 4.784, |
|
"step": 469 |
|
}, |
|
{ |
|
"epoch": 8.0, |
|
"learning_rate": 3.3600000000000004e-05, |
|
"loss": 0.6124, |
|
"step": 536 |
|
}, |
|
{ |
|
"epoch": 8.0, |
|
"eval_accuracy": 0.6912751793861389, |
|
"eval_loss": 0.6217716336250305, |
|
"eval_matthews_correlation": 0.0, |
|
"eval_runtime": 1.8821, |
|
"eval_samples_per_second": 554.165, |
|
"eval_steps_per_second": 4.782, |
|
"step": 536 |
|
}, |
|
{ |
|
"epoch": 8.0, |
|
"step": 536, |
|
"total_flos": 1.0131004291284992e+16, |
|
"train_loss": 0.6175890894078496, |
|
"train_runtime": 442.252, |
|
"train_samples_per_second": 966.756, |
|
"train_steps_per_second": 7.575 |
|
} |
|
], |
|
"max_steps": 3350, |
|
"num_train_epochs": 50, |
|
"total_flos": 1.0131004291284992e+16, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|