Edit model card

hBERTv1_new_pretrain_w_init_48_mnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 on the GLUE MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8954
  • Accuracy: 0.5911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.031 1.0 3068 0.9883 0.4718
0.9713 2.0 6136 0.9752 0.5146
0.9588 3.0 9204 0.9702 0.5167
0.953 4.0 12272 0.9590 0.5355
0.9323 5.0 15340 0.9371 0.5416
0.9068 6.0 18408 0.9213 0.5590
0.8891 7.0 21476 0.9168 0.5608
0.8741 8.0 24544 0.9472 0.5453
0.8589 9.0 27612 0.9185 0.5793
0.8432 10.0 30680 0.9134 0.5747
0.8289 11.0 33748 0.9139 0.5753
0.8137 12.0 36816 0.9113 0.5767
0.7988 13.0 39884 0.8925 0.5917
0.7828 14.0 42952 0.9037 0.5859
0.7705 15.0 46020 0.9129 0.5866
0.7576 16.0 49088 0.9237 0.5879
0.7463 17.0 52156 0.9212 0.5897
0.7341 18.0 55224 0.9226 0.5918

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gokuls/hBERTv1_new_pretrain_w_init_48_mnli

Evaluation results