gokuls commited on
Commit
08625a9
·
1 Parent(s): cf51b84

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: hBERTv1_new_pretrain_w_init_48_qqp
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: qqp
19
+ split: validation
20
+ args: qqp
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.855107593371259
25
+ - name: F1
26
+ type: f1
27
+ value: 0.8099409512685743
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # hBERTv1_new_pretrain_w_init_48_qqp
34
+
35
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the glue dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.3726
38
+ - Accuracy: 0.8551
39
+ - F1: 0.8099
40
+ - Combined Score: 0.8325
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 4e-05
60
+ - train_batch_size: 128
61
+ - eval_batch_size: 128
62
+ - seed: 10
63
+ - distributed_type: multi-GPU
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 50
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
71
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
72
+ | 0.4637 | 1.0 | 2843 | 0.3907 | 0.8136 | 0.7636 | 0.7886 |
73
+ | 0.363 | 2.0 | 5686 | 0.3536 | 0.8338 | 0.7900 | 0.8119 |
74
+ | 0.3211 | 3.0 | 8529 | 0.3476 | 0.8430 | 0.7845 | 0.8138 |
75
+ | 0.2906 | 4.0 | 11372 | 0.3539 | 0.8531 | 0.8059 | 0.8295 |
76
+ | 0.2603 | 5.0 | 14215 | 0.3531 | 0.8531 | 0.8017 | 0.8274 |
77
+ | 0.2373 | 6.0 | 17058 | 0.3716 | 0.8561 | 0.8089 | 0.8325 |
78
+ | 0.2175 | 7.0 | 19901 | 0.3553 | 0.8565 | 0.8123 | 0.8344 |
79
+ | 0.1957 | 8.0 | 22744 | 0.3726 | 0.8551 | 0.8099 | 0.8325 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.29.2
85
+ - Pytorch 1.14.0a0+410ce96
86
+ - Datasets 2.12.0
87
+ - Tokenizers 0.13.3