--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv1_new_pretrain_w_init_48_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8430373485035865 - name: F1 type: f1 value: 0.7845307619176966 --- # hBERTv1_new_pretrain_w_init_48_qqp This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3476 - Accuracy: 0.8430 - F1: 0.7845 - Combined Score: 0.8138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4637 | 1.0 | 2843 | 0.3907 | 0.8136 | 0.7636 | 0.7886 | | 0.363 | 2.0 | 5686 | 0.3536 | 0.8338 | 0.7900 | 0.8119 | | 0.3211 | 3.0 | 8529 | 0.3476 | 0.8430 | 0.7845 | 0.8138 | | 0.2906 | 4.0 | 11372 | 0.3539 | 0.8531 | 0.8059 | 0.8295 | | 0.2603 | 5.0 | 14215 | 0.3531 | 0.8531 | 0.8017 | 0.8274 | | 0.2373 | 6.0 | 17058 | 0.3716 | 0.8561 | 0.8089 | 0.8325 | | 0.2175 | 7.0 | 19901 | 0.3553 | 0.8565 | 0.8123 | 0.8344 | | 0.1957 | 8.0 | 22744 | 0.3726 | 0.8551 | 0.8099 | 0.8325 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3