gokuls commited on
Commit
58e2aee
1 Parent(s): b1d8d51

End of training

Browse files
Files changed (5) hide show
  1. README.md +10 -8
  2. all_results.json +16 -0
  3. eval_results.json +11 -0
  4. train_results.json +8 -0
  5. trainer_state.json +147 -0
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48
3
  tags:
4
  - generated_from_trainer
@@ -14,7 +16,7 @@ model-index:
14
  name: Text Classification
15
  type: text-classification
16
  dataset:
17
- name: glue
18
  type: glue
19
  config: mrpc
20
  split: validation
@@ -22,10 +24,10 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.6102941176470589
26
  - name: F1
27
  type: f1
28
- value: 0.7145421903052065
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,12 +35,12 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  # hBERTv1_new_pretrain_w_init_48_ver2_mrpc
35
 
36
- This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the glue dataset.
37
  It achieves the following results on the evaluation set:
38
- - Loss: 1.2159
39
- - Accuracy: 0.6103
40
- - F1: 0.7145
41
- - Combined Score: 0.6624
42
 
43
  ## Model description
44
 
 
1
  ---
2
+ language:
3
+ - en
4
  base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48
5
  tags:
6
  - generated_from_trainer
 
16
  name: Text Classification
17
  type: text-classification
18
  dataset:
19
+ name: GLUE MRPC
20
  type: glue
21
  config: mrpc
22
  split: validation
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.7181372549019608
28
  - name: F1
29
  type: f1
30
+ value: 0.8099173553719009
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  # hBERTv1_new_pretrain_w_init_48_ver2_mrpc
37
 
38
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE MRPC dataset.
39
  It achieves the following results on the evaluation set:
40
+ - Loss: 0.5916
41
+ - Accuracy: 0.7181
42
+ - F1: 0.8099
43
+ - Combined Score: 0.7640
44
 
45
  ## Model description
46
 
all_results.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.0,
3
+ "eval_accuracy": 0.7181372549019608,
4
+ "eval_combined_score": 0.7640273051369308,
5
+ "eval_f1": 0.8099173553719009,
6
+ "eval_loss": 0.5916191339492798,
7
+ "eval_runtime": 2.1093,
8
+ "eval_samples": 408,
9
+ "eval_samples_per_second": 193.426,
10
+ "eval_steps_per_second": 3.319,
11
+ "train_loss": 0.4669204134071989,
12
+ "train_runtime": 443.7082,
13
+ "train_samples": 3668,
14
+ "train_samples_per_second": 124.0,
15
+ "train_steps_per_second": 1.961
16
+ }
eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.0,
3
+ "eval_accuracy": 0.7181372549019608,
4
+ "eval_combined_score": 0.7640273051369308,
5
+ "eval_f1": 0.8099173553719009,
6
+ "eval_loss": 0.5916191339492798,
7
+ "eval_runtime": 2.1093,
8
+ "eval_samples": 408,
9
+ "eval_samples_per_second": 193.426,
10
+ "eval_steps_per_second": 3.319
11
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 7.0,
3
+ "train_loss": 0.4669204134071989,
4
+ "train_runtime": 443.7082,
5
+ "train_samples": 3668,
6
+ "train_samples_per_second": 124.0,
7
+ "train_steps_per_second": 1.961
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5916191339492798,
3
+ "best_model_checkpoint": "hBERTv1_new_pretrain_w_init_48_ver2_mrpc/checkpoint-116",
4
+ "epoch": 7.0,
5
+ "eval_steps": 500,
6
+ "global_step": 406,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "learning_rate": 3.733333333333334e-05,
14
+ "loss": 0.6666,
15
+ "step": 58
16
+ },
17
+ {
18
+ "epoch": 1.0,
19
+ "eval_accuracy": 0.6911764705882353,
20
+ "eval_combined_score": 0.7459046909903202,
21
+ "eval_f1": 0.800632911392405,
22
+ "eval_loss": 0.6274183392524719,
23
+ "eval_runtime": 2.152,
24
+ "eval_samples_per_second": 189.587,
25
+ "eval_steps_per_second": 3.253,
26
+ "step": 58
27
+ },
28
+ {
29
+ "epoch": 2.0,
30
+ "learning_rate": 3.466666666666667e-05,
31
+ "loss": 0.6239,
32
+ "step": 116
33
+ },
34
+ {
35
+ "epoch": 2.0,
36
+ "eval_accuracy": 0.7181372549019608,
37
+ "eval_combined_score": 0.7640273051369308,
38
+ "eval_f1": 0.8099173553719009,
39
+ "eval_loss": 0.5916191339492798,
40
+ "eval_runtime": 2.1718,
41
+ "eval_samples_per_second": 187.865,
42
+ "eval_steps_per_second": 3.223,
43
+ "step": 116
44
+ },
45
+ {
46
+ "epoch": 3.0,
47
+ "learning_rate": 3.2000000000000005e-05,
48
+ "loss": 0.5981,
49
+ "step": 174
50
+ },
51
+ {
52
+ "epoch": 3.0,
53
+ "eval_accuracy": 0.6225490196078431,
54
+ "eval_combined_score": 0.6614690623331044,
55
+ "eval_f1": 0.7003891050583657,
56
+ "eval_loss": 0.6531738638877869,
57
+ "eval_runtime": 2.173,
58
+ "eval_samples_per_second": 187.761,
59
+ "eval_steps_per_second": 3.221,
60
+ "step": 174
61
+ },
62
+ {
63
+ "epoch": 4.0,
64
+ "learning_rate": 2.9333333333333333e-05,
65
+ "loss": 0.518,
66
+ "step": 232
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "eval_accuracy": 0.7107843137254902,
71
+ "eval_combined_score": 0.7583526831785345,
72
+ "eval_f1": 0.8059210526315789,
73
+ "eval_loss": 0.6250593662261963,
74
+ "eval_runtime": 2.1697,
75
+ "eval_samples_per_second": 188.047,
76
+ "eval_steps_per_second": 3.226,
77
+ "step": 232
78
+ },
79
+ {
80
+ "epoch": 5.0,
81
+ "learning_rate": 2.6666666666666667e-05,
82
+ "loss": 0.3848,
83
+ "step": 290
84
+ },
85
+ {
86
+ "epoch": 5.0,
87
+ "eval_accuracy": 0.6813725490196079,
88
+ "eval_combined_score": 0.7341288974606237,
89
+ "eval_f1": 0.7868852459016394,
90
+ "eval_loss": 0.7553436160087585,
91
+ "eval_runtime": 2.1704,
92
+ "eval_samples_per_second": 187.987,
93
+ "eval_steps_per_second": 3.225,
94
+ "step": 290
95
+ },
96
+ {
97
+ "epoch": 6.0,
98
+ "learning_rate": 2.4e-05,
99
+ "loss": 0.2708,
100
+ "step": 348
101
+ },
102
+ {
103
+ "epoch": 6.0,
104
+ "eval_accuracy": 0.6838235294117647,
105
+ "eval_combined_score": 0.7416007227152136,
106
+ "eval_f1": 0.7993779160186625,
107
+ "eval_loss": 1.069616436958313,
108
+ "eval_runtime": 2.1733,
109
+ "eval_samples_per_second": 187.73,
110
+ "eval_steps_per_second": 3.221,
111
+ "step": 348
112
+ },
113
+ {
114
+ "epoch": 7.0,
115
+ "learning_rate": 2.1333333333333335e-05,
116
+ "loss": 0.2062,
117
+ "step": 406
118
+ },
119
+ {
120
+ "epoch": 7.0,
121
+ "eval_accuracy": 0.6102941176470589,
122
+ "eval_combined_score": 0.6624181539761327,
123
+ "eval_f1": 0.7145421903052065,
124
+ "eval_loss": 1.2159368991851807,
125
+ "eval_runtime": 2.1699,
126
+ "eval_samples_per_second": 188.026,
127
+ "eval_steps_per_second": 3.226,
128
+ "step": 406
129
+ },
130
+ {
131
+ "epoch": 7.0,
132
+ "step": 406,
133
+ "total_flos": 3802532820287488.0,
134
+ "train_loss": 0.4669204134071989,
135
+ "train_runtime": 443.7082,
136
+ "train_samples_per_second": 124.0,
137
+ "train_steps_per_second": 1.961
138
+ }
139
+ ],
140
+ "logging_steps": 1,
141
+ "max_steps": 870,
142
+ "num_train_epochs": 15,
143
+ "save_steps": 500,
144
+ "total_flos": 3802532820287488.0,
145
+ "trial_name": null,
146
+ "trial_params": null
147
+ }