--- language: - en base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init_48_ver2_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.5091743119266054 --- # hBERTv1_new_pretrain_w_init_48_ver2_sst2 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6941 - Accuracy: 0.5092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6948 | 1.0 | 1053 | 0.6948 | 0.5092 | | 0.6927 | 2.0 | 2106 | 0.6941 | 0.5092 | | 0.6879 | 3.0 | 3159 | 0.7005 | 0.5092 | | 0.6873 | 4.0 | 4212 | 0.7004 | 0.5092 | | 0.6887 | 5.0 | 5265 | 0.7151 | 0.5092 | | 0.6871 | 6.0 | 6318 | 0.6975 | 0.5092 | | 0.6859 | 7.0 | 7371 | 0.7068 | 0.5092 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.1