|
--- |
|
language: |
|
- en |
|
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: hBERTv1_new_pretrain_w_init_48_ver2_stsb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE STSB |
|
type: glue |
|
config: stsb |
|
split: validation |
|
args: stsb |
|
metrics: |
|
- name: Spearmanr |
|
type: spearmanr |
|
value: 0.12474663100095418 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv1_new_pretrain_w_init_48_ver2_stsb |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE STSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2509 |
|
- Pearson: 0.1285 |
|
- Spearmanr: 0.1247 |
|
- Combined Score: 0.1266 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| |
|
| 2.3716 | 1.0 | 90 | 2.4198 | 0.1235 | 0.0756 | 0.0995 | |
|
| 2.1648 | 2.0 | 180 | 2.4218 | 0.0592 | 0.0606 | 0.0599 | |
|
| 2.1915 | 3.0 | 270 | 2.5305 | 0.1143 | 0.0959 | 0.1051 | |
|
| 2.1855 | 4.0 | 360 | 2.4912 | 0.1118 | 0.0969 | 0.1043 | |
|
| 2.1858 | 5.0 | 450 | 2.3539 | 0.1130 | 0.1043 | 0.1087 | |
|
| 2.1818 | 6.0 | 540 | 2.2509 | 0.1285 | 0.1247 | 0.1266 | |
|
| 2.2562 | 7.0 | 630 | 2.3302 | 0.1043 | 0.0974 | 0.1009 | |
|
| 2.2299 | 8.0 | 720 | 2.3749 | 0.1984 | 0.1422 | 0.1703 | |
|
| 2.0676 | 9.0 | 810 | 2.3883 | 0.1300 | 0.1329 | 0.1314 | |
|
| 1.926 | 10.0 | 900 | 2.5884 | 0.1259 | 0.1233 | 0.1246 | |
|
| 1.7701 | 11.0 | 990 | 2.3776 | 0.1911 | 0.2059 | 0.1985 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|