--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: hBERTv1_new_pretrain_w_init__qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.598572213069742 --- # hBERTv1_new_pretrain_w_init__qnli This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6672 - Accuracy: 0.5986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6909 | 1.0 | 819 | 0.6783 | 0.5653 | | 0.684 | 2.0 | 1638 | 0.6904 | 0.5100 | | 0.6765 | 3.0 | 2457 | 0.6709 | 0.5881 | | 0.6696 | 4.0 | 3276 | 0.6774 | 0.5695 | | 0.6676 | 5.0 | 4095 | 0.6704 | 0.5903 | | 0.6626 | 6.0 | 4914 | 0.6672 | 0.5986 | | 0.6661 | 7.0 | 5733 | 0.6703 | 0.5907 | | 0.6642 | 8.0 | 6552 | 0.6693 | 0.5960 | | 0.6698 | 9.0 | 7371 | 0.6733 | 0.5799 | | 0.6724 | 10.0 | 8190 | 0.6815 | 0.5636 | | 0.68 | 11.0 | 9009 | 0.6908 | 0.5427 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3