hBERTv2_mrpc / README.md
gokuls's picture
update model card README.md
28484b9
|
raw
history blame
2.48 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: hBERTv2_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7622549019607843
          - name: F1
            type: f1
            value: 0.8380634390651085

hBERTv2_mrpc

This model is a fine-tuned version of gokuls/bert_12_layer_model_v2 on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9954
  • Accuracy: 0.7623
  • F1: 0.8381
  • Combined Score: 0.8002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6388 1.0 15 0.6297 0.6838 0.8122 0.7480
0.612 2.0 30 0.6315 0.6887 0.8135 0.7511
0.5725 3.0 45 0.5772 0.6936 0.8086 0.7511
0.512 4.0 60 0.6261 0.7010 0.8152 0.7581
0.3924 5.0 75 0.6433 0.7279 0.8195 0.7737
0.2592 6.0 90 0.7531 0.6863 0.7594 0.7228
0.1689 7.0 105 0.7904 0.7377 0.8158 0.7768
0.1292 8.0 120 0.9954 0.7623 0.8381 0.8002

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.10.1
  • Tokenizers 0.13.2