--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: hBERTv2_mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7622549019607843 - name: F1 type: f1 value: 0.8380634390651085 --- # hBERTv2_mrpc This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2](https://huggingface.co/gokuls/bert_12_layer_model_v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9954 - Accuracy: 0.7623 - F1: 0.8381 - Combined Score: 0.8002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6388 | 1.0 | 15 | 0.6297 | 0.6838 | 0.8122 | 0.7480 | | 0.612 | 2.0 | 30 | 0.6315 | 0.6887 | 0.8135 | 0.7511 | | 0.5725 | 3.0 | 45 | 0.5772 | 0.6936 | 0.8086 | 0.7511 | | 0.512 | 4.0 | 60 | 0.6261 | 0.7010 | 0.8152 | 0.7581 | | 0.3924 | 5.0 | 75 | 0.6433 | 0.7279 | 0.8195 | 0.7737 | | 0.2592 | 6.0 | 90 | 0.7531 | 0.6863 | 0.7594 | 0.7228 | | 0.1689 | 7.0 | 105 | 0.7904 | 0.7377 | 0.8158 | 0.7768 | | 0.1292 | 8.0 | 120 | 0.9954 | 0.7623 | 0.8381 | 0.8002 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.10.1 - Tokenizers 0.13.2