File size: 2,534 Bytes
b57567a
7deddbf
 
b57567a
 
 
 
 
 
 
 
 
 
 
 
 
 
7deddbf
b57567a
 
 
 
 
 
 
7deddbf
b57567a
 
7deddbf
b57567a
 
 
 
 
 
 
7deddbf
b57567a
7deddbf
 
 
 
b57567a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc662f0
b57567a
 
 
 
 
 
 
 
 
 
 
 
cc662f0
 
 
 
 
 
 
 
b57567a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv2_new_pretrain_mrpc
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE MRPC
      type: glue
      config: mrpc
      split: validation
      args: mrpc
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7034313725490197
    - name: F1
      type: f1
      value: 0.8118195956454122
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hBERTv2_new_pretrain_mrpc

This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5990
- Accuracy: 0.7034
- F1: 0.8118
- Combined Score: 0.7576

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6721        | 1.0   | 29   | 0.6200          | 0.6838   | 0.8122 | 0.7480         |
| 0.6229        | 2.0   | 58   | 0.6098          | 0.6569   | 0.7255 | 0.6912         |
| 0.5689        | 3.0   | 87   | 0.5990          | 0.7034   | 0.8118 | 0.7576         |
| 0.4615        | 4.0   | 116  | 0.6689          | 0.6765   | 0.78   | 0.7282         |
| 0.3475        | 5.0   | 145  | 0.8472          | 0.6054   | 0.6774 | 0.6414         |
| 0.2307        | 6.0   | 174  | 0.9917          | 0.6103   | 0.6913 | 0.6508         |
| 0.166         | 7.0   | 203  | 1.1149          | 0.6544   | 0.7522 | 0.7033         |
| 0.1258        | 8.0   | 232  | 1.3516          | 0.625    | 0.7119 | 0.6684         |


### Framework versions

- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3